the bang bang funnel controller daniel liberzon and
play

The bang-bang funnel controller Daniel Liberzon and Stephan Trenn - PowerPoint PPT Presentation

The bang-bang funnel controller Daniel Liberzon and Stephan Trenn 49th IEEE Conference on Decision and Control Wednesday, December 15, 2010, 11:2011:40, Atlanta, USA Introduction Relative degree one case Relative degree two case


  1. The bang-bang funnel controller Daniel Liberzon and Stephan Trenn 49th IEEE Conference on Decision and Control Wednesday, December 15, 2010, 11:20–11:40, Atlanta, USA

  2. Introduction Relative degree one case Relative degree two case Simulations Conclusions Content Introduction 1 Relative degree one case 2 Relative degree two case 3 Simulations 4 Conclusions 5 The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  3. Introduction Relative degree one case Relative degree two case Simulations Conclusions Feedback loop x = F ( x, u ) ˙ u y y = H ( x ) q Switching e − y ref + logic U − U + Funnel Reference signal y ref : R ≥ 0 → R absolutely continuous The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  4. Introduction Relative degree one case Relative degree two case Simulations Conclusions The funnel Control objective Error e := y − y ref evolves within funnel F = F ( ϕ − , ϕ + ) := { ( t, e ) | ϕ − ( t ) ≤ e ≤ ϕ + ( t ) } where ϕ ± : R ≥ 0 → R absolutely continuous time-varying strict error bound ϕ + ( t ) transient behaviour practical tracking t F ( | e ( t ) | < λ for t >> 0 ) ϕ − ( t ) The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  5. Introduction Relative degree one case Relative degree two case Simulations Conclusions The bang-bang funnel controller Continuous Funnel Controller: Introduced by Ilchmann et al. in 2002 New approach Achieve control objectives with bang-bang control, i.e. u ( t ) ∈ { U − , U + } x = F ( x, u ) ˙ u y y = H ( x ) q Switching e − y ref + logic U − U + Funnel The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  6. Introduction Relative degree one case Relative degree two case Simulations Conclusions Relative degree one Definition (Relative degree one) > 0 � �� � x = F ( x, u ) ˙ y = f ( y, z ) + ˙ g ( y, z ) u ∼ = y = H ( x ) z = h ( y, z ) ˙ Structural assumption f, g, h can be unknown feasibility assumption (later) in terms of f, g, h and funnel Important property u ( t ) << 0 ⇒ y ( t ) << 0 ˙ u ( t ) >> 0 ⇒ y ( t ) >> 0 ˙ The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  7. Introduction Relative degree one case Relative degree two case Simulations Conclusions Switching logic e ( t ) e (0) ϕ + ( t ) t F ϕ − ( t ) u ( t ) = U + u ( t ) = U − u ( t ) = U + The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  8. Introduction Relative degree one case Relative degree two case Simulations Conclusions Switching logic e ( t ) ≤ ϕ − ( t ) e ( t ) > ϕ − ( t ) u ( t ) = U − u ( t ) = U + e ( t ) < ϕ + ( t ) e ( t ) ≥ ϕ + ( t ) Too simple? ⇒ Feasibility assumptions The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  9. Introduction Relative degree one case Relative degree two case Simulations Conclusions Feasibility assumptions y = f ( y, z ) + g ( y, z ) u, ˙ y 0 ∈ R z 0 ∈ Z 0 ⊆ R n − 1 z = h ( y, z ) , ˙ z : [0 , t ] → R n − 1 solves ˙  �  z = h ( y, z ) for some �    �  z 0 ∈ Z 0 and for some y : [0 , t ] → R    �  � Z t := z ( t ) . � with ϕ − ( τ ) ≤ y ( τ ) − y ref ( τ ) ≤ ϕ + ( τ )  �     �    � ∀ τ ∈ [0 , t ] Feasibility assumption U − < ˙ ϕ + ( t ) + ˙ y ref ( t ) − f ( y ref ( t ) + ϕ + ( t ) , z t ) g ( y ref ( t ) + ϕ + ( t ) , z t ) ∀ t ≥ 0 ∀ z t ∈ Z t : U + > ˙ ϕ − ( t ) + ˙ y ref ( t ) − f ( y ref ( t ) + ϕ − ( t ) , z t ) g ( y ref ( t ) + ϕ − ( t ) , z t ) The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  10. Introduction Relative degree one case Relative degree two case Simulations Conclusions Main result relative degree one Theorem (Bang-bang funnel controller) Relative degree one & Funnel & simple switching logic & Feasibility ⇒ Bang-bang funnel controller works: existence and uniqueness of global solution error remains within funnel for all time no zeno behaviour Necessary knowledge: for controller implementation: relative degree (one) signals: error e ( t ) and funnel boundaries ϕ ± ( t ) to check feasibility: bounds on zero dynamics bounds on f and g bounds on y ref and ˙ y ref bounds on the funnel The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  11. Introduction Relative degree one case Relative degree two case Simulations Conclusions Content Introduction 1 Relative degree one case 2 Relative degree two case 3 Simulations 4 Conclusions 5 The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  12. Introduction Relative degree one case Relative degree two case Simulations Conclusions Relative degree two Definition (Relative degree two) > 0 � �� � x = F ( x, u ) ˙ ¨ y = f ( y, ˙ y, z ) + g ( y, ˙ y, z ) u ∼ = y = H ( x ) z = h ( y, ˙ ˙ y, z ) Important property u ( t ) << 0 ⇒ y ( t ) << 0 ¨ u ( t ) >> 0 ⇒ y ( t ) >> 0 ¨ The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  13. Introduction Relative degree one case Relative degree two case Simulations Conclusions Feedback loop x = F ( x, u ) ˙ u y y = H ( x ) q e , ˙ e Switching − y ref + logic U − U + Funnels The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  14. Introduction Relative degree one case Relative degree two case Simulations Conclusions The switching logic e ( t ) decrease e e ( t ) ≤ ϕ d e ( t ) ≤ ϕ d ˙ ˙ − ( t ) − ( t ) ϕ + ( t ) U − U + t F ϕ − ( t ) e ( t ) ≥ ˙ e ( t ) ≥ ˙ ˙ ˙ ϕ + ( t ) ϕ + ( t ) decrease e increase e decrease e e ( t ) ≤ ϕ − ( t ) + ε + e ( t ) ≤ ϕ − ( t ) + ε + e ( t ) ≥ ϕ + ( t ) − ε + e ( t ) ≥ ϕ + ( t ) − ε + e ( t ) ˙ e ( t ) ≥ ϕ d ˙ + ( t ) ϕ − ( t ) ˙ ϕ d + ( t ) t U + U − F d ϕ d − ( t ) e ( t ) ≤ ˙ ˙ ϕ − ( t ) ϕ + ( t ) ˙ increase e The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  15. Introduction Relative degree one case Relative degree two case Simulations Conclusions Feasibility assumptions Funnels F ( ϕ + , ϕ − ) , F d ( ϕ d + , ϕ d − ) Safety distances ε + , ε − > 0 Feasibility of funnels ∀ t ≥ 0 : ε + < ϕ + ( t ) and ε − < ϕ − ( t ) ϕ d ϕ d ∀ t ≥ 0 : + ( t ) > ˙ ϕ − ( t ) and − ( t ) < ˙ ϕ + ( t ) y = f ( y, ˙ ¨ y, z ) + g ( y, ˙ y, z ) u z = h ( y, ˙ ˙ y, z ) Z t := { z ( t ) | z solves ˙ z = h ( y, ˙ y, z ) , z (0) ∈ Z 0 } Choose δ ± > 0 such that ϕ d δ + > max { ˙ − ( t ) , ¨ ϕ − ( t ) } and ϕ d − δ − < min { ˙ + ( t ) , ¨ ϕ + ( t ) } ∀ t ≥ 0 The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  16. Introduction Relative degree one case Relative degree two case Simulations Conclusions Feasibility assumptions Feasibility assumption 1 U − < − δ − + ¨ y ref ( t ) + f ( y t , ˙ y t , z t ) , g ( y t , ˙ y t , z t ) U + > δ + + ¨ y ref ( t ) + f ( y t , ˙ y t , z t ) , g ( y t , ˙ y t , z t ) ∀ t ≥ 0 , ∀ y t ∈ [ y ref ( t ) + ϕ − ( t ) , y ref ( t ) + ϕ + ( t )] , y ref ( t ) + ϕ d y ref ( t ) + ϕ d ∀ ˙ y t ∈ [ ˙ − ( t ) , ˙ + ( t )] , ∀ z t ∈ Z t Feasibility assumption 2 ε + ≥ ( � ϕ d − � + � min { ˙ ϕ + , 0 }� ) 2 2 δ − ε − ≥ ( � ϕ d ϕ − , 0 }� ) 2 + � + � max { ˙ 2 δ + The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  17. Introduction Relative degree one case Relative degree two case Simulations Conclusions Main result relative degree two Theorem (Bang-bang funnel controller) Relative degree two & Funnels & simple switching logic & Feasibility ⇒ Bang-bang funnel controller works: existence and uniqueness of global solution error and its derivative remain within funnels for all time no zeno behaviour The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  18. Introduction Relative degree one case Relative degree two case Simulations Conclusions Content Introduction 1 Relative degree one case 2 Relative degree two case 3 Simulations 4 Conclusions 5 The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

  19. Introduction Relative degree one case Relative degree two case Simulations Conclusions Model of exothermic chemical reactions Model from [Ilchmann & T. 2004]: 340 320 y = br ( z 1 , z 2 , y ) − qy + u, ˙ 300 output y ( t ) y ( t ) y ( t ) y ∗ y ∗ z 1 = c 1 r ( z 1 , z 2 , y ) + d ( z in 280 ˙ 1 − z 1 ) , Funnel Funnel 260 z 2 = c 2 r ( z 1 , z 2 , y ) + d ( z in ˙ 2 − z 2 ) , 240 0 0.5 1 1.5 2 2.5 3 time t b ≥ 0 , q > 0 , c 1 < 0 , c 2 ∈ R , d > 0 , 600 z in 1 / 2 ≥ 0 500 r : R ≥ 0 × R ≥ 0 × R > 0 → R ≥ 0 locally 400 input u ( t ) Lipschitz with r (0 , 0 , y ) = 0 ∀ y > 0 300 y ref = y ∗ > 0 200 0 0.5 1 1.5 2 2.5 3 time t Feasibility assumptions from [IT 2004] imply feasibility for bang-bang funnel controller if ϕ + ( t ) ∈ (0 , y − y ∗ ] , ϕ − ( t ) ∈ ( − y ∗ , 0) , ϕ + ( t ) > − ρ − , ˙ ϕ − ( t ) < ρ + , ˙ The bang-bang funnel controller Daniel Liberzon and Stephan Trenn

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend