the anthropogenic impact of
play

The anthropogenic impact of cross-borders water resources - PowerPoint PPT Presentation

Lebanon Syria Israel Jordan Palestinian Authority The anthropogenic impact of cross-borders water resources development on the water quality of the Jordan River Eilon M. Adar & Sylvie Massoth eilon@bgu.ac.il The Sea of Galilee - The only


  1. Lebanon Syria Israel Jordan Palestinian Authority The anthropogenic impact of cross-borders water resources development on the water quality of the Jordan River Eilon M. Adar & Sylvie Massoth eilon@bgu.ac.il

  2. The Sea of Galilee - The only natural fresh water reservoir in the Middle East Yarmuk River Sea of Galilee

  3. The Jordan River basin is a cross-borders trans-boundary basin shared by Lebanon, Syria, Jordan, Palestinian Authority and Israel. Salt & brines carrier Upper Jordan river 20M/y 500-600M/y Water Budget Flood in the Yarmuk river 250-550M/y

  4. 80-120M/y National water carrier Jordan River 250-350M/y Jordan River Winter Floods ( surplus ) 250-350M/y

  5. Jordan River Basin The Jordan Valley Basin North Sea of Central Galilee South Dead Sea

  6. Sea of Galilee Historical flow rates 480Mm 3 Yarmouk River ~450 Mm3 Wadi Arab ~28 Mm3 Zarka River ~65 Mm3 ~1,250-1,370 Mm3 Dead Sea

  7. Sea of Galilee Current Jordan River flow ! Sewage+ D. dam Brines 27 27M/y 27 Adasiya D. 38M/y King Abdalla Canal (~150) Amman waste water 30-40 King Talal dam 35 Irrigation Irrigation from west 60-70 MCM ~30 MCM 60 -200 MCM Dead Sea

  8. Water Sources & Water Quality of the Lower Jordan River

  9. Identifying & Quantifying the Current Sources ! Sea of Galilee Effluents (industrial, domestic, fish ponds etc.) Irrigation-subsurface return flow (drains) Springs Streams Seepage from shallow aquifers Dead Sea Study area

  10. The Mixing Cells Modeling (MCM) concept Water Balance Expression W n q n1 Leakage from the clay & marls formations R I J    n n n      0 Q q q W S ( 1 ) rn in nj n n    r 1 i 1 j 1 R I J    n n n       Q q q W S ( 2 ) n n n rn in nj    1 1 1 r i j All potential sources are identified

  11. Mass Balance Expression C rk Q rn C ink C nk C ink   R I J            C Q C q C q W S ( 3 ) ink nk n n rk rn in nj nk      r 1 i 1 j 1 Every source is designated by a unique hydro-chemical composition

  12. R I J    n n n      Water Q q q W n rn in nj n Balance    r 1 i 1 j 1 Expression   R I J            C Q C q C q W S ink nk n n rk rn in nk nj 1 1   1 1    r 1 i 1 j 1   R I J            C Q C q C q W S ( 4 ) ink nk n n rk rn in nj nk 2 2 2   2    r 1 i 1 j 1   Mass Balance R I J            C Q C q C q W S Expressions ink nk n n rk rn in nk nj 3 3   3 3    r 1 i 1 j 1       R I J            C Q C q C q W S inK nK n n rK rn in nK nj      r 1 i 1 j 1

  13.   C X P E ( 5 ) n n n n        1 , 1 , , 1 , 1 , 1 , , 1 , 1 , , 1          C , C , , C , C , C , , C , C , , C r nk r nk Rnk i nk i nk Ink nk nk 1 1 2 1 1 1 1 2 1 1 1 1         C C , C , , C , C , C , , C , C , , C ( 6 )   r nk r nk Rnk i nk i nk Ink nk nk 1 2 2 2 2 1 2 2 2 2 2 2 n                    C , C , , C , C , C , , C , C , , C   r nK r nK RnK i nK i nK InK nK nK 1 2 1 2           K 1 R I J n n n   Q   r 1   Q  r  2      Q   R n   q   i 1   q    i X ( 7 ) 2 n           q W S n n I     n      q C W S nk n nj n   1 1      q  C W S  nj  nk n  2  n 2 P ( 8 )    n    C W S   nk n   3 n q     nJ      n    R I J 1 n n n       n   C W S nK n      n   K 1 1 nk 1       nk E 2 ( 9 ) N N n          nk T 3 J E E ( C X P ) ( C X P )  (10 ) n n n n n n n          n 1 n 1 nK K 1 1

  14. Sampling stations (north) Hydro-chemical & Isotopes Data Uri Shavit Technion, Haifa, Israel Avner Vengosh Ben Gurion University, Israel Duke University, NC USA Efrat Farber Ben Gurion University, Israel

  15. Modeling (north) JR-70 JR-69 JR-68 JR-67 – Yarmouk River JR-68 A B1 JR-64 Cell-65 Bore hole B4 River input Cell B6 JR-62 JR-54

  16. Sampling stations (south) Farber et al. 2004

  17. Modeling (south) JR - 53 - Jordan River Input Cell - 1 Cell - 2 Cell - 3 Cell - 4 River input Cell Source Cell - 5

  18. MCM Results for single compartments/segments along the Lower Jordan Valley Average hydro-chemical and isotopic data for the winter (September 2000-February 2001) and summer (March 2001-August 2001). Cell 1 : Results for the upper Jordan River at Alumot dam - Alumot Bridge

  19. Cell Source winter 00-01 summer 01 %cell %cell % diff. % diff. inflow inflow Cell_4 Gesher 1.60% 3.32% Cell_3 77.3 97.2 W.Surf.Inflow_12 5 - Naharayim 22.7 2.93

  20. Zarzir Station 79.5% Zarqa River 6.3 Adam Bridge Rassif 0.6% Abu Mayyala 4.5% Aqraa .6% Mallah Gdeida 7.9% Wadi el Ah'mar 0.6% Mallaha Gilgal Zur el mandase Uga Melecha 0.1% 103.1 Allenby Bridge

  21. Gibton 21.3% Rajib Seebiya Wadi Hawwaya 0.8% Adam Bridge Zarqa River 14.9% Tirtcha Uper 11.8% Aqraa 0.2%, 0.3% Mallah Gdeida 2.6% Tovlan Station Abu Mayyala 5.1% Wadi el Ah'mar 0.2% Mallaha 1.3%, 1.1% Gilgal Zur el mandase Uga Melecha 22.0%, 18.5% Allenby Bridge

  22. The MCMsf Model enabled to assess the current fluxes and discharge of water sources along the Jordan River ! Thank you for your attention Eilon Adar (eilon@bgu.ac.il)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend