temperature and correlations in driven dissipative systems
play

Temperature and Correlations in Driven Dissipative Systems Giacomo - PowerPoint PPT Presentation

Temperature and Correlations in Driven Dissipative Systems Giacomo Gradenigo Laboratoire Interdisciplinaire de Physique (LIPhy) Grenoble (2014-present ): E. Bertin, J.-L. Barrat, E. Ferrero Rome (2010-2012): A. Puglisi, A. Vulpiani, A.


  1. Temperature and Correlations in Driven Dissipative Systems Giacomo Gradenigo Laboratoire Interdisciplinaire de Physique (LIPhy) Grenoble (2014-present ): E. Bertin, J.-L. Barrat, E. Ferrero Rome (2010-2012): A. Puglisi, A. Vulpiani, A. Sarracino ENS, Lyon, 10-11-2015

  2. History Ph. D. : Supercooled liquids ; Trento (Italy), 2007-2009 Supervisor : P. Verrocchio. Collaborations: G. Parisi, A. Cavagna. I Giardina, T. Grigera, C. Cammarota Post-Doc : Non-equilibrium Statistical Mechanis; Rome, 2010-2012 Advisor: A. Puglisi, A. Vulpiani Collaborations: H. Touchette, R. Burioni, U. Marconi, A. Cavagna, T. Grigera, P. Verrocchio, A. Sarracino, D. Villamaina Post-Doc : Glass transition; Paris, 2013-2014 Advisor: G. Biroli, S. Franz Post-Doc : Non-equilibrium Statistical Mechanics; Grenoble, 2015-present Advisor: E. Bertin, J.-L. Barrat Collaborations: E. Ferrero, A. Puglisi, G. Biroli

  3. Interests & Reasearch topics Equilibrium Statistical Mechanics - Effective theories for the glass transition and Dynamical Heterogeneities in Supercooled Liquids ( Trento , simulations). - Supercooled Liquids in confined geometries : effect of confinement on the glass transition ( Rome , Paris , theory, simulations). Out-of-equilibrium Statistical-Mechanics - Ratchet effect ( Rome , simulations) - Coarse-grained description of Granular Fluids : Linearized Fluctuating Hydrodynamics ( Rome , theory, simulations, experiments) - Non-equilibrium fluctuations in the driven Stochastic Lorenz Gas (1d schematic model of a granular gas): Fluctuation-Relation, Condensation of Fluctuations ( Rome, Grenoble , theory, simulations) - Anomalous diffusion in driven systems: Continuous Time Random Walks, Kinetically Constrained Models ( Rome, Grenoble , theory, simulations) - Effective ‘’equilibrium-like’’ theories for Driven Athermal Systems ( Grenoble , theory, simulations)

  4. Interests & Reasearch topics Out-of-equilibrium Statistical-Mechanics Coarse-grained description of Granular Fluids : Linearized Fluctuating Hydrodynamics Temperature = ? Correlations and Temperature Effective equilibrium-like theories for Driven Athermal Systems

  5. Dense and Dilute Granular Systems Two-dimensional Amorphous packing of granular fluid frictional grains (study of a model system) PART I PART II

  6. PART I Temperatures and Correlations in a 2D bulk driven granular fluid

  7. Granular Fluids: Non-Equilibrium Stationary State (Time Translational Invariance, constant energy flux) Bulk Dissipation Bulk Driving (energy source coupled to each particle) σ ) 2 (1 − α ) 2 ∆ E coll ∝ − ([ v i − v j ] · ˆ Inelastic collisions α < 1 v i v 0 i ˆ σ Vibrating plate v 0 v j j m h v 2 i i 1 Granular NESS X T g = temperature (Non-Equilibrium Stationary State) Nd 2 i

  8. Granular Fluids: Non-Equilibrium Stationary State (Time Translational Invariance, constant energy flux) Bulk Dissipation Bulk Driving (energy source coupled to each particle) σ ) 2 (1 − α ) 2 ∆ E coll ∝ − ([ v i − v j ] · ˆ Inelastic collisions α < 1 v i v 0 i ˆ σ Vibrating plate v 0 v j j m h v 2 i i 1 φ = Packing Fraction T g = T g ( φ ) X T g = Nd 2 T g ↓ φ ↑ i

  9. Physical meaning of the Granular Temperature = ? (Time Translational Invariance, constant energy flux) Bulk Dissipation Boundary Driving σ ) 2 (1 − α ) 2 ∆ E coll ∝ − ([ v i − v j ] · ˆ Study of the fluctuations within the granular gas: does really T g plays the role of a temperature? Vibrating vessel m h v 2 i i 1 NESS Granular X T g = (Non-Equilibrium Stationary State) temperature Nd 2 i

  10. Physical meaning of the Granular Temperature = ? (Time Translational Invariance, constant energy flux) Bulk Dissipation Boundary Driving σ ) 2 (1 − α ) 2 ∆ E coll ∝ − ([ v i − v j ] · ˆ Heat Flux Study of the fluctuations within the granular gas: does really T g plays the role of a temperature? ‘’Energy transport between two granular thermostats’’, C.E. Lecomte, A. Naert, J. Stat. Mech. , P11004 ( 2014 ) High frequency Low frequency ‘’Work exchange with a granular gas: the viewpoint of the T hot T cold Fluctuation Theorem’’, A. Naert, EPL 97, 20010 ( 2012 ) g g m h v 2 i i 1 NESS Granular X T g = (Non-Equilibrium Stationary State) temperature Nd 2 i

  11. Energy injection mechanism as a ‘’thermostat’’ = ? (Time Translational Invariance, constant energy flux) Bulk Dissipation Bulk Driving (energy source coupled to each particle) σ ) 2 (1 − α ) 2 ∆ E coll ∝ − ([ v i − v j ] · ˆ Bulk energy injection can be modeled as a thermostat at T b ? Which role is played by T b -T g ? Vibrating plate m h v 2 i i 1 Granular NESS X T g = temperature (Non-Equilibrium Stationary State) Nd 2 i

  12. Two models for bulk driving With viscous drag Without viscous drag (finite temperature thermostat) (infinite temperature thermostat) v i ( t ) = − γ b v i ( t ) + ξ i ( t ) + F coll v i ( t ) = ξ i ( t ) + F coll m ˙ m ˙ i i TPC Van Noije, MH Ernst, E. Trizac, G. Gradenigo et al , EPL 96, 14004 ( 2011 ) I. Pagonabarraga, PRE 59 (4), 4326 G. Gradenigo et al , J. Stat. Mech. P08017 ( 2011 ) ( 1999 ) A. Puglisi et al , J. Chem. Phys. 136, 014704 ( 2012 )

  13. Two-dimensional bulk driven granular fluid: Scale-free correlations v i ( t ) = ξ i ( t ) + F coll h ξ µ m ˙ j ( t 0 ) i = 2 Γ δ µ, ν δ i,j δ ( t � t 0 ) i ( t ) ξ ν i White noise Energy Gain Energy Sink v ( r ) v ⊥ ( r ) v k ( r 0 ) Coarse-grained velocity field v k ( r ) v ? ( r 0 ) v ( r 0 ) Linearized Fluctuating Hydrodynamic calculations & Simulations show that ✓ ◆ L h v ? ( r ) v ? ( r 0 ) i ⇠ h v k ( r ) v k ( r 0 ) i ⇠ Γ log | r 0 � r | Scale-Free Correlations « Randomly driven granular fluids: Large-scale structure » . TPC Van Noije, MH Ernst, E. Trizac, I. Pagonabarraga, PRE 59 (4), 4326 ( 1999 )

  14. Two-dimensional bulk driven granular fluid: Scale-free correlations v i ( t ) = ξ i ( t ) + F coll h ξ µ m ˙ j ( t 0 ) i = 2 Γ δ µ, ν δ i,j δ ( t � t 0 ) i ( t ) ξ ν i White noise Energy Gain Energy Sink Scale-Free ✓ ◆ L h v ? ( r ) v ? ( r 0 ) i ⇠ h v k ( r ) v k ( r 0 ) i ⇠ Γ log | r 0 � r | Correlations Experiments « Forcing and Velocity Correlations in a Vibrated Granular Monolayer » A. Prevost, D. A. Egolf, J. S. Urbach, PRL 89 (8), 084301 ( 2002 ) Smooth circulat plate (d=20cm) Steel spheres (d=1.59mm) | C k ( r ) | ∼ 1 /r 2

  15. Two-dimensional bulk driven granular fluid: Finite-range correlations v i ( t ) = ξ i ( t ) + F coll h ξ µ m ˙ j ( t 0 ) i = 2 Γ δ µ, ν δ i,j δ ( t � t 0 ) i ( t ) ξ ν i White noise Energy Gain Energy Sink Scale-Free ✓ ◆ L h v ? ( r ) v ? ( r 0 ) i ⇠ h v k ( r ) v k ( r 0 ) i ⇠ Γ log | r 0 � r | Correlations « Forcing and Velocity Correlations in a Vibrated Granular Monolayer » Experiments A. Prevost, D. A. Egolf, J. S. Urbach, PRL 89 (8), 084301 ( 2002 ) Rough exagonal plate (d=30cm) (lattice of steel balls d=1.19 mm) C k ( r ) ∼ e � r/ ξ k Steel spheres (d=3.97mm) C ⊥ ( r ) ∼ e − r/ ξ ⊥

  16. Two-dimensional bulk driven granular fluid: Finite-range correlations � � / � Mean Free Path: jj 0 : 6 � for f ? . It is surprising that this decay length has little microscopic length-scale density dependence, despite the fact that the mean free path of the system estimated from Enskog-Boltzmann kinetic theory varies λ 0 ∼ (1 − φ ) 2 from 2 : 3 � for � � 0 : 125 to 0 : 16 � for � � 0 : 6 . A similar φ « Forcing and Velocity Correlations in a Vibrated Granular Monolayer » Experiments A. Prevost, D. A. Egolf, J. S. Urbach, PRL 89 (8), 084301 ( 2002 ) Rough exagonal plate (d=30cm) (lattice of steel balls d=1.19 mm) C k ( r ) ∼ e � r/ ξ k Steel spheres (d=3.97mm) C ⊥ ( r ) ∼ e − r/ ξ ⊥

  17. Two-dimensional bulk driven granular fluid: The equilibrium thermostat Equilibrium Thermostat v i ( t ) = − γ b v i ( t ) + ξ i ( t ) + F coll m ˙ i Random Kicks Inelastic Collisions Viscous drag h ξ µ j ( t 0 ) i = 2 T b γ b δ µ, ν δ i,j δ ( t � t 0 ) i ( t ) ξ ν σ ) 2 (1 − α ) 2 ∆ E coll ∝ − ([ v i − v j ] · ˆ Energy dissipated in collisions The Limit of Elastic Collisions is well defined T g = T b α = 1 α < 1 ‘’Distance’’ from equilibrium ∆ T = T b − T g

  18. Two-dimensional bulk driven granular fluid: Equilibrium thermostat produces Finite-range correlations h ξ µ v i ( t ) = − γ b v i ( t ) + ξ i ( t ) + F coll j ( t 0 ) i ⇠ T b γ b i ( t ) ξ ν m ˙ i Predictions from Linearized Fluctuating Hydrodynamic calculations G. Gradenigo et al , EPL 96, 14004 ( 2011 ) G. Gradenigo et al , J. Stat. Mech. P08017 ( 2011 ) n h v ? ( r 0 ) v ? ( r ) i = T g δ (2) ( r 0 � r ) + ( T b � T g ) K 0 ( | r 0 � r | ) ξ 2 ? Finite ‘’Distance’’ from equilibrium p ν / γ b ξ ⊥ = Characteristic length K 0 ( | r 0 − r | / ξ ? ) ∼ e � | r 0 � r | / ξ ? ν = Shear viscosity Finite extent of correlations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend