tableau t 0
play

Tableau T 0 : Zohar Manna 2 1 1 A 1 : - PowerPoint PPT Presentation

1 2 1 1 2 1 1 2 1 1 Example: 0 : p CS256/Winter 2009 Lecture #13 Tableau T 0 : Zohar Manna 2 1 1 A 1 : { p, p, p } A 2 : { p, p, p }


  1. 1 2 1 1 2 1 1 2 1 1 Example: ϕ 0 : p CS256/Winter 2009 Lecture #13 Tableau T ϕ 0 : Zohar Manna 2 1 1 ✘ ✛ ✤ ✜ ✤ ✜ ❄ ❄ ✲ ✛ ✘ A 1 : { p, p, p } A 2 : {¬ p, p, p } ✛ ✣ ✢ ✣ ✢ ✚✙ ✚✙ ✻ ❅ � ✻ ❅ � ❅ � ❅ � ✤ ❅ � ✜ ❅ ❘ � ✠ ✘ A 3 : { p, ¬ p } p, ✛ ✣ ✢ ✛✘ ✤ ✜ ❄ ✙ ✛ A 4 : {¬ p, ¬ p, ¬ p } ✣ ✢ 13-2

  2. 0 1 1 0 1 2 0 2 1 1 0 1 2 0 2 1 Promising Formula Example: 0 ϕ 1 : p ∧ ¬ p In T p , a path can start and stay forever in atom A 2 . 1   But A 2 includes p , i.e., A 2 promises that p will ¬ p, ϕ 1 , p, p, p, p   Φ ϕ 1 : eventually happen, but it is never fulfilled in the path. ¬ ϕ 1 , ¬ p, ¬ ¬ p, ¬ p, ¬ p, ¬ p   We want to exclude these paths. 1 0 The idea is that if a path contains an atom that in- Only 2 promising formulas in Φ ϕ cludes a promising formula, then the path should fulfill the promise. 1 1 1 ψ 1 : ¬ p promises r 1 : ¬ p ψ 2 : ¬ p promises r 2 : ¬ p A formula ψ ∈ Φ ϕ is said to promise the formula r if ψ is one of the forms: ¬ (( ¬ r ) W p ) r p U r ¬ ¬ r � �� � � �� � � �� � ≈ r ∧ ... ≈ ≈ r ∧ ... r 13-3 13-4

  3. q ψ then ( σ, k ) q r for some k ≥ j 1 Promise Fulfillment Fulfilling Atoms 1 Property: 2 1 1 Definition: Atom A fulfills ψ ∈ Φ ϕ Let σ be an arbitrary model of ϕ , (which promises r ) 1 and ψ ∈ Φ ϕ a formula that promises r . if ¬ ψ ∈ A or r ∈ A . q ¬ ψ q r 2 1 1 If ( σ, j ) 1 Proof: Follows from the semantics of temporal Example: In T p , formulas. 2 1 1 Only one promising formula: Claim: (promise fulfillment by models) 1 1 Let σ be an arbitrary model of ϕ , ψ : p promises r : p and ψ ∈ Φ ϕ a formula that promises r . A + 2 1 1 1 : { p, p, p } Then σ contains infinitely many positions j ≥ 0 1 1 such that fulfills p since p ∈ A 1 A + ( σ, j ) or ( σ, j ) 3 : { p, ¬ p } p, Proof: fulfills p since p ∈ A 3 1. Assume σ contains infinitely many ψ -positions. A + 4 : {¬ p, ¬ p, ¬ p } Then σ must contain infinitely many r -positions, fulfills p since ¬ since ψ promises r . p ∈ A 4 2. Assume σ contains finitely many ψ -positions. But A − Then it contains infinitely many ¬ ψ -positions. 2 : {¬ p, p, p } does not fulfill p since p, ¬ p ∈ A 2 13-5 13-6

  4. 1 2 1 1 2 1 1 2 1 1 1 Tableau T Fulfilling Paths p 2 1 1 ❅ � Definition: A path π : A 0 , A 1 , . . . is fulfilling if ❅ � ✤ ✜ ✤ ✜ ❘ ❅ � ✠ ✲ A + A − ✛ ✘ for every promising formula ψ ∈ Φ ϕ 2 : {¬ p, p } 1 : { p, p, p } p, ✛ ✣ ✢ ✣ ✢ it contains infinitely many A j that fulfill ψ . ✚✙ ✚✙ ✻ ❅ � ✻ ❅ � ❅ � ❅ � ❅ � ✤ ✜ ❘ ❅ � ✠ Example: In T p , A + 3 : { p, ¬ p } p, ✣ ✢ ✒ � � A − 2 , A − 2 , A − 2 , A + 3 , A + 4 , A + � 4 , . . . ✛✘ A − 2 , A + 1 , A − 2 , A + 1 , A + 1 , A + ✤ ✜ 1 , . . . ❄ ✙ A + ✛ 4 : {¬ p, ¬ p, ¬ p } ✣ ✢ are fulfilling paths, but A − 2 , A − 2 , A − 2 , A − 2 , A − 2 , A − 2 , A − 2 , . . . is not a fulfilling path. 13-7 13-8

  5. 0 1 0 1 0 2 0 2 1 2 0 2 1 1 0 1 0 1 Fig. 5.3: Tableau T ϕ 1 for formula Example: 0 1 ϕ 1 : p ∧ ¬ p ϕ 1 : p ∧ ¬ p 0 1 2 0 2 1 2 0 2 1 0 1 0 1 T ϕ 1 in Fig 5.3 0 1 � ¬ p, ¬ � p, ¬ � � ¬ p, ¬ p, p, p, A ++ A −− There are two promising formulas in Φ : : : 0 1 2 ¬ ¬ p, ¬ ϕ 1 3 ¬ ¬ p, ¬ ϕ 1 p, p, 2 0 2 1 2 0 2 1 p promises ψ 1 : ¬ r 1 : ¬ p 0 1 0 1 0 1 ψ 2 : ¬ p promises r 2 : ¬ p � ¬ p, ¬ � p, ¬ 0 1 � � p, ¬ ¬ p, p, ¬ ¬ p, A ++ A − + : : 0 ¬ p, ¬ p, ¬ ϕ 1 1 ¬ p, ¬ ¬ p, ¬ ϕ 1 A ++ : { ¬ p, ¬ ¬ p, } 0 p, 1 . . . 2 0 2 1 2 0 2 1 0 0 1 0 1 A − + : { ¬ ¬ ¬ p, } p, 0 p, 1 . . . 1 � ¬ p, � p, � � p, ¬ ¬ p, p, ¬ ¬ p, A ++ A ++ A ++ : : : { ¬ p, ¬ p, ¬ p, . . . } 4 ¬ p, ¬ p, ¬ ϕ 1 5 p, ¬ ¬ p, ¬ ϕ 1 2 A −− : { ¬ ¬ p, } p, p, . . . 3 A ++ : { ¬ p, ¬ p, ¬ p, . . . } � ¬ p, � p, � � 4 p, ¬ p, p, ¬ p, A ++ A + − : : 6 ¬ p, ¬ p, ¬ ϕ 1 7 p, ¬ p, ϕ 1 A ++ : { p, p, ¬ ¬ p, . . . } 5 A ++ : { ¬ p, ¬ ¬ p, } p, . . . 6 A + − : { ¬ p, } p, p, . . . 7 13-9 13-10

  6. Models vs. fulfilling paths Example: (Cont’d) Claim 2 (model → fulfilling path): ) ω not fulfilling. • path ( A + − If 7 π σ : A 0 , A 1 , . . . is a path induced by a model σ of ϕ , • path ( A ++ ) ω is fulfilling. 2 then π σ is fulfilling. ) ω is fulfilling. • path ( A ++ , A −− 2 3 Claim 3 (fulfilling path → model): If • path A ++ , ( A ++ ) ω is fulfilling. 4 5 π σ : A 0 , A 1 , . . . is a fulfilling path in T ϕ , • For arbitrary m , path then there exists a model σ of ϕ that induces π σ . π : ( A ++ , A −− ) m , A ++ , ( A ++ ) ω 2 3 4 5 is fulfilling. 13-11 13-12

  7. 0 2 Proposition 1 (satisfiability by path) Examples 0 2 0 2 0 2 0 2 Formula ϕ is satisfiable In the examples below we use the following optimization: A path starting in A can only visit nodes that are reach- iff 2 2 0 able from A in T ϕ . So we only need to consider nodes q p that are reachable from nodes labeled by atoms A such the tableau T ϕ contains a fulfilling path 2 2 0 0 q ϕ and thus σ q ϕ . that ϕ ∈ A . π : A 0 , A 1 , A 2 , . . . such that ϕ ∈ A 0 0 Example: ϕ : p ∧ ¬ p Proof: q ϕ . Then by Claims 1, 2, there exists a fulfilling Φ ϕ = { ϕ, p, p, p, p, A 0 , A 1 , . . . is a fulfilling path in T ϕ with ( ⇐ ) π : q ϕ , by the definition of induced, ¬ ϕ, ¬ p, ¬ p, ¬ p, ¬ p } ϕ ∈ A 0 Then, by Claim 3, there exists model σ such that Basic formulas: { p, p, p } → 8 atoms ∀ j ≥ 0 , ∀ p ∈ Φ ϕ : ( σ, j ) iff p ∈ A j There is only one atom such that ϕ ∈ A : A : {¬ p, ϕ } Since ϕ ∈ A 0 , ( σ, 0) p, p, p, Any successor of A requires ¬ p, p , but these cannot coexist in any atom. ( ⇒ ) σ path π σ in T ϕ that is induced by σ . So the part of T ϕ reachable from A is A Since ( σ, 0) ϕ ∈ A 0 . So there is no fulfilling path (no path at all, as A does not have a successor). 13-13 13-14 Hence, ϕ is not satisfiable.

  8. 0 1 0 1 0 1 2 0 2 1 0 1 2 0 2 1 1 0 1 2 0 2 1 2 0 2 1 0 1 0 1 ϕ 1 : p ∧ ¬ p Fig. 5.3: Tableau T ϕ 1 for formula Example: 2 0 2 1 ϕ 1 : p ∧ ¬ p Φ ϕ 1 = 2 0 2 1 2 0 2 1 0 1 0 1 2 0 2 1 0 1 { ϕ 1 , p, ¬ p, p, p, ¬ p, 0 1 � ¬ p, ¬ � p, ¬ ¬ ϕ 1 , ¬ p , ¬ ¬ p, ¬ p, ¬ p, ¬ ¬ p } � � ¬ p, ¬ p, p, p, A ++ A −− : : � �� � 2 ¬ ¬ p, ¬ ϕ 1 3 ¬ ¬ p, ¬ ϕ 1 p, p, ¬ p 2 0 2 1 2 0 2 1 0 1 0 1 ¬ p and ¬ p promise ¬ p . � ¬ p, ¬ � p, ¬ � � p, ¬ ¬ p, p, ¬ ¬ p, A ++ A − + : : Basic formulas: 0 ¬ p, ¬ p, ¬ ϕ 1 1 ¬ p, ¬ ¬ p, ¬ ϕ 1 { p, ¬ p } → 8 atoms p, 2 0 2 1 2 0 2 1 0 1 0 1 There is only one atom s.t. ϕ 1 ∈ A : � ¬ p, � p, A 7 : { p, p, ¬ p, p, ¬ p, ϕ 1 } � � p, ¬ ¬ p, p, ¬ ¬ p, A ++ A ++ : : 4 ¬ p, ¬ p, ¬ ϕ 1 5 p, ¬ ¬ p, ¬ ϕ 1 Any successor of A 7 requires ¬ p, and therefore p, ϕ 1 . 1 So the only successor is A 7 itself, and the part of T ϕ 1 � ¬ p, � p, � � reachable from A 7 is p, ¬ p, p, ¬ p, A ++ A + − : : 6 ¬ p, ¬ p, ¬ ϕ 1 7 p, ¬ p, ϕ 1 A + − 7 which has the infinite path A ω 7 . However, A + − does not fulfill the promising 13-15 13-16 7 ¬ p , and thus A ω formula 7 is not a fulfilling path. Hence, ϕ 1 is not satisfiable.

  9. 1 Strongly Connected Subgraphs ( scs ’s) • scs S is ϕ -reachable 1 if there exist a path and k ≥ 0 Definitions B 0 , B 1 , . . . , B k , . . . • A subgraph S ⊆ T ϕ is called such that ϕ ∈ B 0 and B k ∈ S . strongly connected subgraph ( scs ) if for every 2 distinct atoms A, B ∈ S , Example: In T p , there exists a path from A to B { A + 1 } , { A + 1 , A − 2 } , { A + 4 } are fulfilling which only passes through atoms of S { A − 2 } is not fulfilling All scs s are ( p ) -reachable. Note: a single-node subgraph is an scs A 3 is a transient scs . All others are good scs s. Example: In T ϕ 1 (Fig. 5.3), • A single-node scs is called transient (“bad”) if it is not connected to itself { A 4 } transient scs { A 5 } good scs { A 7 } is the only ϕ 1 -reachable scs • A non-transient (“good”) scs S is fulfilling { A ++ } { A ++ if every promising formula ψ ∈ Φ ϕ is , A −− } fulfilling scs ’s 2 3 5 fulfilled by some atom A ∈ S , i.e. { A − + } { A + − } scs ’s but not fulfilling 1 7 ¬ ψ ∈ A or r ∈ A 13-17 13-18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend