t dt 2 t t dt t t dt 1 erf x e 0 0 function t function
play

t dt = 2 t t dt t t dt 1 erf x e 0 0 - PowerPoint PPT Presentation

u(t-t o ) Unit Step Unit Step Function Function 1 t t ( ) = 0 u t t < 0 0 t t 0 t o ! Special Functions ! Special Functions (t-t o ) ! Differential Equations ! Differential


  1. u(t-t o ) Unit Step Unit Step Function Function ⎧ ≥ ⎫ 1 t t ( ) − = 0 ⎨ ⎬ u t t < 0 ⎩ 0 t t ⎭ 0 t o ! Special Functions ! Special Functions δ (t-t o ) ! Differential Equations ! Differential Equations Dirac Delta Dirac Delta ! Fourier Series and Transforms ! Fourier Series and Transforms Function Function ! Probability and Random Processes ! Probability and Random Processes ( ) − ( ) du t t δ − = ! Linear System Analysis ! 0 Linear System Analysis t t 0 dt t o ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi +∞ ( ) + ε ( ) Error ∫ ∫ t ( ) Error Error 2 δ − = δ − = x 0 ∫ t dt = − 2 t t dt t t dt 1 erf x e 0 0 − ∞ − ε Function t π Function Function 0 0 +∞ ( ) ( ) + ε ( ) ( ) ( ) ∫ ∫ t δ − = δ − = 0 f t t t dt f t t t dt f t ( ) ( ) 2 ∞ ∫ t dt − = − = 2 0 0 0 − ∞ − ε erfc x 1 erf x e t 0 π x ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = = ∞ ∫ ∞ t − = − δ − = − erf 0 0 erfc erf x erf x f t t t dt f t u t t 1 1 0 1 0 0 − Exponential − ( ) ∫ Exponential xt Exponential ∞ e ( ) ∫ ∞ t e = x [ ( ) ] 1 ( ) = E x dt δ − = δ − E x dt Integrals a t t t t n Integrals Integrals i − t t 1 0 0 a ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 1

  2. Fourier Integral Representation Fourier Integral Representation Fourier Integral Representation ( ) ⎧ ⎫ + ∞ ( ) df df x ∫ − ω ℑ = = ω ω ) ( ) i x ⎨ ⎬ e dx i f ( ) 1 + ∞ + ∞ ( ∫ ∫ = ω − ′ ′ ′ ω i x x f x e f x d x d ⎩ ⎭ − ∞ dx dx π − ∞ − ∞ 2 Fourier Transform (Exponential) Fourier Transform (Exponential) Fourier Transform (Exponential) ⎧ ⎫ ⎧ ⎫ ( ) +∞ ( ) 2 n ( ) ( ) ∫ d f ( ) d f − ω ′ ′ ′ ω = i x ℑ = − ω ω ℑ = ω ω n f e f x d x 2 ⎨ ⎬ ⎨ ⎬ i f f − ∞ n 2 ⎩ ⎭ ⎩ ⎭ dx dx + ∞ ( ) 1 ( ) ∫ = ω ω ω i x f x e f d π − ∞ 2 ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi ( ) ( ) ω f f x 2 ( ) d f df + + = δ − − ∞ < < +∞ a bf x x ( ) ( ) ω f + ω x i x f x x e 0 0 2 dx dx 1 0 ( ) − ω δ x − i x e x 0 0 α Taking Fourier Transform 2 Taking Fourier Transform − α Taking Fourier Transform x e ω + α 2 2 ( ) ( ) ( ) ( ) +∞ ( ) ( ) ( ) ( ) ( ) ∫ ω ω = ξ − ξ ξ f f − ω f x * f x f f x d − ω ω + ω ω + ω = 2 i x 1 2 1 2 − ∞ 1 2 f ai f b f e 0 [ ] ( ) ( ) ω π δ ω − ω + δ ω + ω cos x 0 0 0 ( ) α ω + α + β ( ) − α 2 2 2 − ω β 2 ω − x i x i x x e cos x ( ) e ( ) 0 ( ) 1 + ∞ e 0 ∫ ω = ω − β − α 2 + α ω = ω 2 2 2 2 2 4 f f x d ( ) − ω + ω π − ω + ω ⎡ α ⎤ α α + β 2 2 2 2 4 b ia − ∞ 2 b ia − α β + β x e ⎢ cos x sin x ⎥ ( ) β 2 ω − β − α + α ω ⎣ ⎦ 2 2 2 2 2 4 ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 2

  3. ( ) ( ) F Y (y) ω f x f ( ) ( ) ⎡ ⎤ ⎧ ⎫ ⎧ ⎫ − α 2 x 2 β π ω + β 2 ω − β 2 e cos x − + − ⎢ ⎨ ⎬ ⎨ ⎬ ⎥ exp exp α α α 1 ⎢ 2 2 ⎥ 2 ⎩ 4 ⎭ ⎩ 4 ⎭ ⎣ ⎦ e α − π ⎧ ω ⎫ 2 x 2 2 − ⎨ ⎬ exp α α 2 ⎩ 4 ⎭ ( ) n d ( ) i ω n δ x y n dx ( ) ⎧ ⎫ 2 J 0 x ⎪ ω < ⎪ 1 ( ) ( ) { } ⎨ ⎬ − ω 2 1 = ≤ ≤ ≤ ⎪ ⎪ F y P Y y 0 F y 1 ⎩ ⎭ 0 elsewhere Y Y ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi f Y (y) ( ) { } +∞ ( ) Expected ( ) dF y Expected ∫ Expected = = = ( ) +∞ ( ) Y f y ∫ ∞ = = E Y Y yf y dy F 1 f y dy Y dy Value Y Y Y − ∞ Value − ∞ Value { ( ) } ( ) +∞ ( ) ( ) ∫ = = E g Y g Y g y f y dy Y − ∞ y Variance Variance Variance { } ( ) { } { } ( ) ( ) ( ) ∫ y 2 2 < ≤ = = − σ = − = − 2 2 2 P y Y y f y dy F y F y E Y Y E Y Y 1 2 Y Y 2 Y 1 y Y 1 ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 3

  4. X(t) Time = ∫ ( ) 1 ( ) { ( ) } Time Time T ≈ X t X t dt E X t Averaging Averaging Averaging T 0 Autocorrelation Autocorrelation Autocorrelation t ( ) { ( ) ( ) } ( ) ( ) 1 ∫ T τ = + τ = + τ R E X t X t X t X t dt xx T 0 { ( ) } +∞ ( ) { } ∫ = ( ) ( ) ( ) E X t xf x , t dx = = 2 2 R 0 E X t X t X − ∞ xx ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi H( ω )=System Function h(t)=Impulse Response H( ω ω )=System Function ( ) +∞ ( ) h(t)=Impulse Response h(t)=Impulse Response H( )=System Function ∫ ω = − ωτ τ τ i S e R d ( ) xx xx − ∞ h t X(t) f(t) ( ) ω H ( ) 1 + ∞ ( ) ∫ τ = ωτ ω ω i R e S d π xx xx − ∞ ( ) ( ) ( ) 2 ( ) +∞ ( ) ∫ t ∫ = − τ τ τ − ω ω = i t X t h t f d H e h t dt − ∞ 0 ( ) ( ) 1 ~ 2 +∞ ~ ( ) ( ) ω = ω ∫ = ∫ − ω ω = ( ) +∞ ( ) ( ) ( ) ( ) S X i t X e X t dt − τ τ τ = X t h t f d h t * f t xx − ∞ T − ∞ ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 4

  5. Fourier ( ) ( ) ( ) ~ ( ) Fourier Fourier ( ) ~ ω = ω ω + α = − α = & x H f t x x f t h t e Transform Transform Transform ( ) + ζω + ω = ( ) 1 ( ) 1 ( ) ( ) ( ) ( ) 2 2 2 & & & ω = ω = ω 2 ω = ω 2 ω x 2 x x f t S x H f H S 0 0 xx ff T T ( ) ( ) ( ) Spectral Spectral ω = ω 2 ω Spectral ( ) 1 − ζω S H S = ω t h t e sin t ω = ω − ζ 0 Relationship 2 1 Relationship Relationship xx ff ω d d 0 d ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi ( ) − 3 x x + α = & + + α = Finite x x n t i 1 i 2.5 x n + ∆ i 1 i 2 difference t 1.5 White Noise 1 ∆ 0.5 1 t = + 0 x x n -0.5 + + α ∆ + α ∆ i 1 i i 1 t 1 t i = -1 x x ( t ) -1.5 i -2 = + ∆ α ∆ << -2.5 x x t n for t 1 + i 1 i i -3 0 0.0001 0.0002 0.0003 0.0004 0.0005 Time (s) 1 1 = + α ∆ >> x x n for t 1 + i 1 α ∆ i α i t ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend