t cross section and measurement of the pole mass
play

t cross section and measurement of the pole mass Christian Schwinn - PowerPoint PPT Presentation

Status of predictions for the total t t cross section and measurement of the pole mass Christian Schwinn Univ. Freiburg 11.08.2014 (See also High precision fundamental constants at the TeV scale, arXiv:1405.4781 [hep-ph] ) C.


  1. Status of predictions for the total t ¯ t cross section and measurement of the pole mass Christian Schwinn — Univ. Freiburg — 11.08.2014 (See also “High precision fundamental constants at the TeV scale”, arXiv:1405.4781 [hep-ph] ) C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

  2. Introduction 1 Total t ¯ t cross section measurements (in pb) σ Tevatron = 7 . 60 +0 . 41 − 0 . 41 (D0+CDF) t ¯ t  162 +7 (CMS)  σ LHC @7 TeV − 7 = t ¯ t 177 +11 (ATLAS)  − 10  237 +13 (CMS)  σ LHC @8 TeV − 13 = t ¯ t 242 +10 (ATLAS)  − 10 Top mass from kinematic measurements  173 . 20 ± 0 . 87GeV (Tevatron comb. 8 . 7 fb − 1 )  m t = 173 . 29 ± 0 . 95GeV (LHC comb. 4 . 9 fb − 1 )  Relation to theoretical mass definition? Difference ∼ 1GeV to well-defined mass definition expected C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

  3. Mass measurement from cross section 2 Theory prediction for σ t ¯ t in QCD : function of α s , m t , PDFs Proposal: determine m t in well-defined scheme (pole, MS,...) from σ t ¯ t measurement (Langenfeld/Moch/Uwer 09) Experimental measurement depends on m MC t Latest experimental results: • CMS: m pole = 176 . 7 +3 . 8 − 3 . 4 GeV t (using NNPDF2.3) • ATLAS: m pole = 172 . 9 +2 . 5 − 2 . 6 GeV t (using PDF4LHC) C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

  4. Total top-pair production cross-section 3 Full NNLO calculation (B¨ arnreuther/Czakon/Fiedler/Mitov 12–13) NNLL resummation Soft threshold logarithms α s log β (Czakon/Mitov/Sterman 09) Threshold logs and Coulomb corrections α s /β (Beneke/Falgari/CS 09) Resummation for distributions (Kidonakis, Ahrens et al. ⇒ Adrian’s talk) Programs including exact NNLO result • top++ v2.0 : NNLO+NNLL (soft) (Czakon/Mitov) • HATHOR v1.5 : NNLO (Aliev et al.) • Topixs v2.0 NNLO+NNLL (soft+Coulomb) (Beneke et al.) EW corrections ∼ 2% (Bernreuther/F¨ ucker/Si; K¨ uhn/Scharf/Uwer, 05/06) QED (e.g. qγ induced) ∼ 1% (Hollik/Kollar 07) C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

  5. Total top-pair production cross-section 4 Comparison of different approximations (excluding PDF + α s uncertainties) • ± 5% scale uncertainty at NNLO; ± 3 – 4% at NNLL Σ tt � pb � Topixs � Beneke et al. � SCET 1PI � PIM � Ahrens et al. � 280 mt � 173.3, MSTW2008 1PI � Kidonakis � HATHOR 1.3 � Aliev et al. � top �� � Czakon � Mitov � 260 240 220 200 NNLL NNLL NNLO app N3LO app ATLAS � NLO NNLO 180 � NNLO app � NNLO CMS C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

  6. Total top-pair production cross-section 4 Comparison of different approximations (excluding PDF + α s uncertainties) • ± 5% scale uncertainty at NNLO; ± 3 – 4% at NNLL PDF+ α s uncertainties now comparable to scale uncertainty Σ NNLO � pb � LHC � 8 TeV � MSTW08 CT10 NNPDF2.3 ABM12 ATLAS � CMS C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

  7. NNLL vs NNLO 5 Reduction of scale uncertainty from threshold resummation  245 . 89 +6 . 24(2 . 5%) NNLL(top + +) : − 8 . 41(3 . 4%) pb  239 . 18 + 9 . 29(3 . 9%) NNLO : − 14 . 85(6 . 2%) pb ⇒ 241 . 04 + 8 . 65(3 . 6%) NNLL(topixs) : − 11 . 09(4 . 3%) pb  top++ : Mellin space resummation (Sterman 87; Catani/Trentadue 89) • Includes 2-loop constant term H 2 in threshold expansion | H 2 =0 = 242 . 74 pb σ NLLL t ¯ t C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

  8. NNLL vs NNLO 5 Reduction of scale uncertainty from threshold resummation  245 . 89 +6 . 24(2 . 5%) NNLL(top + +) : − 8 . 41(3 . 4%) pb  239 . 18 + 9 . 29(3 . 9%) NNLO : − 14 . 85(6 . 2%) pb ⇒ 241 . 04 + 8 . 65(3 . 6%) NNLL(topixs) : − 11 . 09(4 . 3%) pb  top++ : Mellin space resummation (Sterman 87; Catani/Trentadue 89) • Includes 2-loop constant term H 2 in threshold expansion | H 2 =0 = 242 . 74 pb σ NLLL t ¯ t topixs: combined soft/Coulomb resummation • RGE for momentum-space resummation (Becher/Neubert 06) • dependence on scales µ f , µ h ∼ 2 M : ∆ scale σ NNLL = +5 . 64 − 6 . 56 pb t ¯ t • resummation uncertainty: choice of µ s ∼ Mβ 2 , kinematic ambiguities, higher-order terms: ∆ res σ NNLL = +6 . 56 − 4 . 01 pb t ¯ t C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

  9. NNLL vs NNLO 6 Heavy Quarks as test case for resummation methods K NNLL 1.30 NNLL � Topixs � NNLL fix � Topixs � 1.25 NNLL � top �� � 1.20 NNLL H2 � 0 � top �� � ( K NNLL = σ NNLL /σ NLO , 1.15 LHC √ s = 8 TeV) 1.10 1.05 m Q � GeV � 1.00 500 1000 1500 2000 NNLL: momentum-space, running µ s = 2 m Q β 2 ( Topixs default) NNLL fix : momentum-space, fixed µ s ( Topixs ) NNLL (top++): Mellin-space (Cacciari et al. 11; Czakon/Mitov 11-13) NNLL H 2=0 (top++): Mellin-space, two-loop constant term set to zero C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

  10. NNLL vs NNLO 6 Heavy Quarks as test case for resummation methods K NNLL 1.30 NNLL � Topixs � NNLL fix � Topixs � 1.25 NNLL � top �� � 1.20 NNLL H2 � 0 � top �� � ( K NNLL = σ NNLL /σ NLO , 1.15 LHC √ s = 8 TeV) 1.10 1.05 m Q � GeV � 1.00 500 1000 1500 2000 ⇒ resummation methods agree well for larger masses • differences at m t : estimate of resummation ambiguities and higher-order effects s log β 2 terms (NNLL’) • main difference: treatment of H 2 ⇒ α 3 C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

  11. N3LO approx ? 7 Expand NNLL to O ( α 3 s ) , e.g. (Beneke/Falgari/Klein/CS 13) qq, NNLL =12945 . 4 log 6 β − 37369 . 1 log 5 β + 27721 . 4 log 4 β + 41839 . 4 log 3 β ∆ σ (3) + 1 � − 6278 . 5 log β + 3862 . 5 log 2 β + 2804 . 7 log 3 β − 2994 . 5 log 4 β � β + 153 . 9 log 2 β + 122 . 9 log β − 145 + � log β 1 , 2 , 1 /β, C (3) � + scale dep. β 2 � �� � not known exactly N 3 LO A : keep all terms, including µ s , µ h -dependence and constants N 3 LO B : only keep terms known exactly d Σ qq d �Σ gg � pb � � pb � d Β d Β 2.5 1.5 � NNLOapp � NNLOapp N3LOA � kh � 2,ks � 1 � N3LOA � kh � 2,ks � 1 � 2.0 N3LOB N3LOB 1.0 1.5 1.0 0.5 0.5 Β 0.2 0.4 0.6 0.8 1.0 Β 0.2 0.4 0.6 0.8 1.0 � 0.5 � 0.5 C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

  12. N3LO approx ? 7 Expand NNLL to O ( α 3 s ) , e.g. (Beneke/Falgari/Klein/CS 13) qq, NNLL =12945 . 4 log 6 β − 37369 . 1 log 5 β + 27721 . 4 log 4 β + 41839 . 4 log 3 β ∆ σ (3) + 1 � − 6278 . 5 log β + 3862 . 5 log 2 β + 2804 . 7 log 3 β − 2994 . 5 log 4 β � β + 153 . 9 log 2 β + 122 . 9 log β − 145 + � log β 1 , 2 , 1 /β, C (3) � + scale dep. β 2 � �� � not known exactly Approx. N3LO from one-particle inclusive kinematics (Kidonakis 14)  244 . 87 +3 . 5(1 . 5%) N3LO A : − 6 . 7(2 . 8%) pb    239 . 18 + 9 . 29(3 . 9%) 245 . 90 +6 . 7(2 . 7%) NNLO : − 14 . 85(6 . 2%) pb ⇒ N3LO B : − 5 . 0(2 . 0%) pb   248 +7(2 . 8%)  N3LO 1PI : − 8(3 . 2%) pb But: strong dependence of incompletely known terms on soft scale: ∆ µ s σ N3LO A = +3 . 8 − 12 . 1 pb t ¯ t ⇒ need input beyond NNLL, use only for uncertainty estimate. C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

  13. Mass measurement from cross section 8 Follow method from (ATLAS-CONF-2011-54) Fit m t -dependence of theoretical cross-section: � 172 . 5 c 0 + c 1 ( m t − 172 . 5) + c 2 ( m t − 172 . 5) 2 + c 3 ( m t − 172 . 5) 3 � pb , � 4 � σ th t ( m t ) = t ¯ m t c 0 = 166 . 5 , c 1 = − 1 . 15 , c 2 = 5 . 1 × 10 − 3 , c 3 = 8 . 5 × 10 − 5 Use fit of dependence of experimental result on m MC t maximize joint likelihood assuming m t = m MC t � f ( m t ) = f th ( σ | m t ) · f exp ( σ | m t ) dσ , with normalized Gaussians � � � t ( m t ) � 2 σ − σ th 1 t ¯ f th = exp − √ 2 π ∆ σ th 2(∆ σ th t ( m t )) 2 t ( m t ) t ¯ t ¯ Determine uncertainty from 68% area in upper/lower region; estimate uncertainty from assumption m t = m MC . t C. Schwinn Theory status of t ¯ t cross section and pole mass. MIAPP ”Top quark physics day”

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend