symplectic geometry for classical and quantum magnetic
play

Symplectic geometry for classical and quantum magnetic fields San V - PowerPoint PPT Presentation

Symplectic geometry for classical and quantum magnetic fields San V u Ngo .c Univ. Rennes 1 & Institut Universitaire de France Symplectic Techniques in Dynamical Systems ICMAT, Madrid November 11-15, 2013 joint work with Nicolas


  1. Symplectic geometry for classical and quantum magnetic fields San V˜ u Ngo .c Univ. Rennes 1 & Institut Universitaire de France Symplectic Techniques in Dynamical Systems ICMAT, Madrid November 11-15, 2013 joint work with Nicolas Raymond (Rennes) and Fr´ ed´ eric Faure (Grenoble) arXiv:1306.5054 San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 1/30

  2. The magnetic Laplacian Consider a charged particle in a domain X ⊂ R n (or Riemannian manifold) moving in a non-vanishing, time-independent magnetic field. San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 2/30

  3. The magnetic Laplacian Consider a charged particle in a domain X ⊂ R n (or Riemannian manifold) moving in a non-vanishing, time-independent magnetic field. Magnetic field: B ∈ Ω 2 ( X ) is a differential 2-form. San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 2/30

  4. The magnetic Laplacian Consider a charged particle in a domain X ⊂ R n (or Riemannian manifold) moving in a non-vanishing, time-independent magnetic field. Magnetic field: B ∈ Ω 2 ( X ) is a differential 2-form. Magnetic potential: A ∈ Ω 1 ( X ) , s.t. dA = B . San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 2/30

  5. The magnetic Laplacian Consider a charged particle in a domain X ⊂ R n (or Riemannian manifold) moving in a non-vanishing, time-independent magnetic field. Magnetic field: B ∈ Ω 2 ( X ) is a differential 2-form. Magnetic potential: A ∈ Ω 1 ( X ) , s.t. dA = B . Classical Hamiltonian: H ( q, p ) = � p − A ( q ) � 2 on T ∗ X . San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 2/30

  6. The magnetic Laplacian Consider a charged particle in a domain X ⊂ R n (or Riemannian manifold) moving in a non-vanishing, time-independent magnetic field. Magnetic field: B ∈ Ω 2 ( X ) is a differential 2-form. Magnetic potential: A ∈ Ω 1 ( X ) , s.t. dA = B . Classical Hamiltonian: H ( q, p ) = � p − A ( q ) � 2 on T ∗ X . Gauge transformation: p �→ p + d f . San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 2/30

  7. The magnetic Laplacian Consider a charged particle in a domain X ⊂ R n (or Riemannian manifold) moving in a non-vanishing, time-independent magnetic field. Magnetic field: B ∈ Ω 2 ( X ) is a differential 2-form. Magnetic potential: A ∈ Ω 1 ( X ) , s.t. dA = B . Classical Hamiltonian: H ( q, p ) = � p − A ( q ) � 2 on T ∗ X . Gauge transformation: p �→ p + d f . � 2 � � � ∂ Quantum Hamiltonian: H = − a j . i ∂q j Here X = R n , A = a 1 dq 1 + · · · a n dq n . San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 2/30

  8. The magnetic Laplacian Consider a charged particle in a domain X ⊂ R n (or Riemannian manifold) moving in a non-vanishing, time-independent magnetic field. Magnetic field: B ∈ Ω 2 ( X ) is a differential 2-form. Magnetic potential: A ∈ Ω 1 ( X ) , s.t. dA = B . Classical Hamiltonian: H ( q, p ) = � p − A ( q ) � 2 on T ∗ X . Gauge transformation: p �→ p + d f . � 2 � � � ∂ Quantum Hamiltonian: H = − a j . i ∂q j Here X = R n , A = a 1 dq 1 + · · · a n dq n . Gauge transformation: unitary conjugation by e if/ � . San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 2/30

  9. Motivations Maths: much less studied than electric field ∆ + V San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 3/30

  10. Motivations Maths: much less studied than electric field ∆ + V (some similarities, sometimes mysterious) San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 3/30

  11. Motivations Maths: much less studied than electric field ∆ + V (some similarities, sometimes mysterious) Earth’s magnetic field San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 3/30

  12. Motivations Maths: much less studied than electric field ∆ + V (some similarities, sometimes mysterious) Earth’s magnetic field Superconductors [Fournais-Helffer, Lu-Pan, etc.] San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 3/30

  13. The Semiclassical Credo Quantum Mechanics is related to Classical Mechanics Quantum Classical Quantum state Classical particle Hilbert space Phase space (symplectic manifold) L 2 ( X ) T ∗ X San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 4/30

  14. The Semiclassical Credo Quantum Mechanics is related to Classical Mechanics Quantum Classical Quantum state Classical particle Hilbert space Phase space (symplectic manifold) L 2 ( X ) T ∗ X Quantum observable: Classical observable: selfadjoint operator ˆ H Hamiltonian H ∈ C ∞ ( M ) San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 4/30

  15. The Semiclassical Credo Quantum Mechanics is related to Classical Mechanics Quantum Classical Quantum state Classical particle Hilbert space Phase space (symplectic manifold) L 2 ( X ) T ∗ X Quantum observable: Classical observable: selfadjoint operator ˆ H Hamiltonian H ∈ C ∞ ( M ) � 2 ∆ g � ξ � 2 � ∂ ξ j i ∂x j � 2 � � � ∂ H ( q, p ) = � p − A ( q ) � 2 H = − a j i ∂q j San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 4/30

  16. The Semiclassical Credo Quantum Mechanics is related to Classical Mechanics Quantum Classical Quantum state Classical particle Hilbert space Phase space (symplectic manifold) L 2 ( X ) T ∗ X Quantum observable: Classical observable: selfadjoint operator ˆ H Hamiltonian H ∈ C ∞ ( M ) � 2 ∆ g � ξ � 2 � ∂ ξ j i ∂x j � 2 � � � ∂ H ( q, p ) = � p − A ( q ) � 2 H = − a j i ∂q j Op w � ( p ) with p 0 = principal symbol p ∼ p 0 + � p 1 + � 2 p 2 + · · · . . . . . . San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 4/30

  17. The Semiclassical Credo Quantum Mechanics is related to Classical Mechanics Quantum Classical Quantum state Classical particle Hilbert space Phase space (symplectic manifold) L 2 ( X ) T ∗ X Quantum observable: Classical observable: selfadjoint operator ˆ H Hamiltonian H ∈ C ∞ ( M ) � 2 ∆ g � ξ � 2 � ∂ ξ j i ∂x j � 2 � � � ∂ H ( q, p ) = � p − A ( q ) � 2 H = − a j i ∂q j Op w � ( p ) with p 0 = principal symbol p ∼ p 0 + � p 1 + � 2 p 2 + · · · . . . . . . The Hamiltonian dynamics of H can be used rigorously to get information on the spectrum of ˆ H , in the regime � → 0 . San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 4/30

  18. The Semiclassical Credo Quantum Mechanics is related to Classical Mechanics Quantum Classical Quantum state Classical particle Hilbert space Phase space (symplectic manifold) L 2 ( X ) T ∗ X Quantum observable: Classical observable: selfadjoint operator ˆ H Hamiltonian H ∈ C ∞ ( M ) � 2 ∆ g � ξ � 2 � ∂ ξ j i ∂x j � 2 � � � ∂ H ( q, p ) = � p − A ( q ) � 2 H = − a j i ∂q j Op w � ( p ) with p 0 = principal symbol p ∼ p 0 + � p 1 + � 2 p 2 + · · · . . . . . . The Hamiltonian dynamics of H can be used rigorously to get information on the spectrum of ˆ H , in the regime � → 0 . (and vice-versa !) San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 4/30

  19. Semiclassical analysis for magnetic fields asymptotics, as � → 0 , of eigenfunctions, eigenvalues, gaps, tunnel effect, etc. (many authors !) San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 5/30

  20. Semiclassical analysis for magnetic fields asymptotics, as � → 0 , of eigenfunctions, eigenvalues, gaps, tunnel effect, etc. (many authors !) constant magnetic field variable magnetic field, non zero possibly vanishing magnetic field various geometries San V˜ u Ngo .c, Univ. Rennes 1 & Institut Universitaire de France Symplectic geometry for classical and quantum magnetic fields 5/30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend