a symplectic kovacic s algorithm in dimension 4
play

A symplectic Kovacics algorithm in dimension 4 Thierry COMBOT - PowerPoint PPT Presentation

Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples A symplectic Kovacics algorithm in dimension 4 Thierry COMBOT University of Burgundy, Dijon Joint work with Camilo SANABRIA, Universidad de los Andes,


  1. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples A symplectic Kovacic’s algorithm in dimension 4 Thierry COMBOT University of Burgundy, Dijon Joint work with Camilo SANABRIA, Universidad de los Andes, Bogota July 19, 2018 1/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  2. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples A matrix M ∈ GL 2 n ( K ) is symplectic ⇔ M t JM = J where � � 0 I n J = . − I n 0 A matrix M ∈ GL 2 n ( K ) is projectively symplectic ⇔ M t JM = λ J for some λ ∈ K ∗ . Set of symplectic/projective symplectic matrices: SP 2 n ( K ) , PSP 2 n ( K ) The Lie algebras: sp 2 n ( K ) = { M ∈ M 2 n ( K ) , M t J + JM = 0 } , psp 2 n ( K ) = { M ∈ M 2 n ( K ) , ∃ λ ∈ K , M t J + JM = λ J } . 2/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  3. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples Galois group of a linear differential operator L ∈ K ( z )[ ∂ ]: group of automorphisms of the field generated by the solutions of L fixing K ( z ) An operator L of order 2 n is (projectively) symplectic ⇔ Gal( L ) isomorphic to a subgroup of SP 2 n ( K ) (resp. PSP 2 n ( K )). 3/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  4. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples A more workable definition: Proposition An operator L of order 2 n is (projectively) symplectic, if and only if there exists an invertible matrix P ∈ M 2 n ( K ( z )) such that P − 1 AP + P ′ P ∈ sp 2 n ( K ( z )) , resp. P − 1 AP + P ′ P ∈ psp 2 n ( K ( z )) with A is the companion matrix of L. 4/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  5. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples Proposition The operator L projectively symplectic ⇔ ∃ an invertible antisymmetric matrix W ∈ M 2 n ( K ( z )) such that A t W + WA + W ′ + λ W = 0 for a λ ∈ K ( z ) , and L is symplectic for λ = 0 . The gauge transformation matrix can be obtained by W = P t JP . 5/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  6. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples IsSymplectic Input: A linear differential operator L of order 2 n with coefficients in K ( z ). Output: A projective symplectic structure if it exists. 1 Write down the system A t W + WA + W ′ = 0. 2 Compute a basis B = { W 1 , . . . , W m } of the hyperexponential solutions. 3 For each exponential type of a solution in B , look for linear combinations over K of the W i ’s with same exponential type such that det( a 1 W i 1 + . . . + a p W i p ) � = 0. If there are none, return []. Else return a 1 W i 1 + . . . + a p W i p . 6/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  7. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples Definition A Liouvillian solution of L is a solution of L built by successive integrations, exponentiations and algebraic extensions of K ( z ) . The purpose of original Kovacic algorithm is to compute Liouvillian solutions of an operator L ∈ K ( z )[ ∂ ] of order 2. We want here to generalize it to operators of order 4, but using the additional constraint that L should be symplectic. 7/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  8. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples The vector space L of Liouvillian solutions is a subspace of C 4 . The differential Galois group of L stabilize L , and its reduction to L is a virtually solvable group. Two cases appears: There exists a sub vector space stable by the Galois group: this can be tested by trying to factorize L . There is none except the trivial ones, and L is irreducible. 8/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  9. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples Theorem A proper algebraic subgroup of SP 4 ( C ) is up to conjugacy generated by elements of the form  ⋆ ⋆ ⋆ ⋆   ⋆ ⋆ ⋆ ⋆  ⋆ ⋆ ⋆ ⋆ 0 ⋆ ⋆ ⋆      or  or     0 0 0 ⋆ ⋆ ⋆ ⋆ ⋆   0 0 ⋆ ⋆ 0 0 0 ⋆     ⋆ ⋆ 0 0 0 0 ⋆ ⋆ 0 0 0 0 ⋆ ⋆ ⋆ ⋆      ,  .     0 0 ⋆ ⋆ ⋆ ⋆ 0 0   0 0 0 0 ⋆ ⋆ ⋆ ⋆ 9/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  10. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples The important point of the symplectic condition: the complicated finite groups of SL 4 ( C ) do not appear! If L is reducible, then it admits a factorization in two operators of order 2 ⇒ apply Kovacic algorithm on each factor If L is irreducible, then it admits a LCLM factorization in a quadratic extension of K ( z ). 10/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  11. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples Proposition The kernel of a Poisson structure W is an invariant vector space. Proposition Let L be an irreducible operator with symplectic structure W 1 . All projective Poisson structures are symplectic and their Pfaffian ∈ K ( z ) . If Gal ( L ) = Z 2 ⋉ G 1 , G 1 ⊂ SL 2 ( K ) , then L admits two projective symplectic structures in a quadratic extension of K ( z ) . If L admits a projective symplectic structure W 2 � = W 1 , then ∃ λ ∈ C such that W 1 + λ W 2 is a strict Poisson structure in a quadratic extension of K ( z ) . 11/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  12. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples Example: 16 z 5 − 80 z 4 + 128 z 3 − 63 z 2 − 2 z + 4 L = Dz 4 + 2 ( z − 1) Dz 3 Dz 2 � � − − 4 z 2 ( z − 2) 2 z ( z − 2) 32 z 4 − 128 z 3 + 144 z 2 − 33 z + 1 4 z 5 − 20 z 4 + 32 z 3 − 21 z 2 + 10 z + 2 � � � � Dz + ( z − 1) 4 z 2 ( z − 2) 2 z 2 ( z − 2) 2 admits 3 projective symplectic structures W 1 , W 2 , W 3 4 z 5 − 16 z 4+20 z 3 − 10 z 2+5 z − 1 z 3 / 2 ( z − 2) (2 − 2 z )  √ z ( z − 2) (3 z − 1)  0 √ z     � 8 z 3 − 8 z 2 − 1 �  − 4 z 5 − 16 z 4+20 z 3 − 10 z 2+5 z − 1 ( z − 2)   − 1 / 2 √ z ( z − 2)  0  √ z 4 √ z        � 8 z 3 − 8 z 2 − 1 �  ( z − 2)  z 3 / 2 ( z − 2) −√ z ( z − 2) (3 z − 1)   − 1 / 4 0  √ z      − z 3 / 2 ( z − 2) ( − 2 z + 2) 1 / 2 √ z ( z − 2) − z 3 / 2 ( z − 2) 0 12/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  13. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples 4 z 5 − 24 z 4+52 z 3 − 50 z 2+19 z +1 3  z √ z − 2 (3 z − 5)  0 z ( z − 2) 2 (2 − 2 z ) √ z − 2     � 8 z 3 − 40 z 2+64 z − 33 �   − 4 z 5 − 24 z 4+52 z 3 − 50 z 2+19 z +1 z  − 1 / 2 z √ z − 2  0   √ z − 2 4 √ z − 2       � 8 z 3 − 40 z 2+64 z − 33 �  z   − z √ z − 2 (3 z − 5) z ( z − 2) 3 / 2  − 1 / 4 0  √ z − 2      − z ( z − 2) 3 / 2 ( − 2 z + 2) 1 / 2 z √ z − 2 − z ( z − 2) 3 / 2 0 √ � 16 z 3 − 48 z 2+32 z +1 �  z ( z − 2) √  z ( z − 2)( z − 1) � 0 z ( z − 2) − 4 z ( z − 2) z ( z − 2)       √ � 16 z 3 − 48 z 2+32 z +1 �  z ( z − 2)   �  1 / 4 0 z ( z − 2) 0   z ( z − 2) −      √  z ( z − 2)( z − 1)  �  z ( z − 2) 0 0   − z ( z − 2)     � z ( z − 2) 0 0 0 − 13/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  14. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples det( λ 1 W 1 + λ 2 W 2 + λ 3 W 3 ) = z 2 ( z − 2) 2 ( λ 2 1 + λ 2 2 − λ 2 3 ) 2 ⇒ L admits several LCLM factorizations in quadratic extensions. Dz 1 L = LCLM ( Dz 2 − √ z ( z − 2) + 2 , 2( z − 2) − 2 z − Dz 1 Dz 2 − 2( z − 2) − 2 z + √ z ( z − 2) + 2) The Kovacic algorithm can be applied on the order 2 factors with base field K ( z , √ z ). 14/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend