swiss cheese action on the totalization of operads under
play

Swiss-Cheese action on the totalization of operads under the monoid - PowerPoint PPT Presentation

Bimodules and Ibimodules Model Structures Main result and applications Swiss-Cheese action on the totalization of operads under the monoid actions operad Julien Ducoulombier Universit e paris 13 22/01/2015 Bimodules and Ibimodules Model


  1. Bimodules and Ibimodules Model Structures Main result and applications Coloured operads Definition A coloured operad over the set of colours S , or S-operad , is given by: a family of spaces { O ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S an operadic composition ◦ i : O ( s 1 , .., s n ; s n +1 ) × O ( s ′ 1 , .., s ′ m ; s i ) → O ( s 1 , .., s i − 1 , s ′ 1 , .., s ′ m , s i +1 , .., s n ; s n +1 ) distinguished elements {∗ s ∈ O ( s ; s ) } . Definition An O -space is a family of spaces { X s } s ∈ S with maps O ( s 1 , . . . , s n ; s n +1 ) × X s 1 × · · · × X s n → X s n +1 If S = { o ; c } then O n ; c ) and O n c = O ( n ; c ) = O ( c , . . . , c o = O ( n + 1; o ) = O ( c , . . . , c , o ; o ) � �� � � �� � n n

  2. Bimodules and Ibimodules Model Structures Main result and applications Coloured operads Example: The { o ; c } -operad of unital monoid actions A ct n n − 1 A ct ( n ; c ) = ∗ n ; c for n ≥ 0 ���� ���� A ct ( n ; o ) = ∗ n ; o for n > 0 the empty set otherwise with the obvious operadic composition

  3. Bimodules and Ibimodules Model Structures Main result and applications Coloured operads Example: The { o ; c } -operad of unital monoid actions A ct A ct ( n ; c ) = ∗ n ; c for n ≥ 0 A ct ( n ; o ) = ∗ n ; o for n > 0 ∈ A ct / the empty set otherwise with the obvious operadic composition

  4. Bimodules and Ibimodules Model Structures Main result and applications Coloured operads Example: The { o ; c } -operad of unital monoid actions A ct A ct ( n ; c ) = ∗ n ; c for n ≥ 0 A ct ( n ; o ) = ∗ n ; o for n > 0 ∈ A ct / the empty set otherwise with the obvious operadic composition X c X o Topological Left module monoid over X c

  5. Bimodules and Ibimodules Model Structures Main result and applications Coloured operads Example: The { o ; c } -operad of unital monoid actions A ct A ct ( n ; c ) = ∗ n ; c for n ≥ 0 A ct ( n ; o ) = ∗ n ; o for n > 0 ∈ A ct / the empty set otherwise with the obvious operadic composition Definition An { o ; c } -operad O is pointed if there is a map of operads from A ct to O .

  6. Bimodules and Ibimodules Model Structures Main result and applications Coloured operads Example: The { o ; c } -operad of unital monoid actions A ct A ct ( n ; c ) = ∗ n ; c for n ≥ 0 A ct ( n ; o ) = ∗ n ; o for n > 0 ∈ A ct / the empty set otherwise with the obvious operadic composition Definition An { o ; c } -operad O is pointed if there is a map of operads from A ct to O . Example: The { o ; c } -operad of monoid actions A ct > 0 A ct > 0 ( n ; c ) = ∗ n ; c for n > 0 A ct > 0 ( n ; o ) = ∗ n ; o for n > 0 ∈ A ct > 0 / the empty set otherwise with the obvious operadic composition

  7. Bimodules and Ibimodules Model Structures Main result and applications Coloured operads Example: The Swiss-Cheese operad SC d If the output is ”close” then all the inputs are also ”close” and SC d ( c , . . . , c ; c ) = C d ( n ). � �� � n If the output is ”open” then we denote by SC d ( n 1 , n 2 ; o ) the space of configurations of nonoverlapping n 1 little disks and n 2 upper semidisks labeled by { 1 , . . . , n 1 + n 2 } in the unit upper semidisk so that the semidisks are all centered about the diameter of the unit semidisk. SC 2 (1 , 2; o )

  8. Bimodules and Ibimodules Model Structures Main result and applications Coloured operads Example: The Swiss-Cheese operad SC d If the output is ”close” then all the inputs are also ”close” and SC d ( c , . . . , c ; c ) = C d ( n ). � �� � n If the output is ”open” then we denote by SC d ( n 1 , n 2 ; o ) the space of configurations of nonoverlapping n 1 little disks and n 2 upper semidisks labeled by { 1 , . . . , n 1 + n 2 } in the unit upper semidisk so that the semidisks are all centered about the diameter of the unit semidisk. SC 2 (1 , 2; o ) SC 2 (2; c ) SC 2 (2 , 2; o )

  9. Bimodules and Ibimodules Model Structures Main result and applications Coloured operads Example: The Swiss-Cheese operad SC d If the output is ”close” then all the inputs are also ”close” and SC d ( c , . . . , c ; c ) = C d ( n ). � �� � n If the output is ”open” then we denote by SC d ( n 1 , n 2 ; o ) the space of configurations of nonoverlapping n 1 little disks and n 2 upper semidisks labeled by { 1 , . . . , n 1 + n 2 } in the unit upper semidisk so that the semidisks are all centered about the diameter of the unit semidisk. SC 2 (1 , 2; o ) SC 2 (1 , 2; o ) SC 2 (2 , 3; o )

  10. Bimodules and Ibimodules Model Structures Main result and applications Coloured operads Example: The Swiss-Cheese operad SC d If the output is ”close” then all the inputs are also ”close” and SC d ( c , . . . , c ; c ) = C d ( n ). � �� � n If the output is ”open” then we denote by SC d ( n 1 , n 2 ; o ) the space of configurations of nonoverlapping n 1 little disks and n 2 upper semidisks labeled by { 1 , . . . , n 1 + n 2 } in the unit upper semidisk so that the semidisks are all centered about the diameter of the unit semidisk. Remark If X is a pointed space and A is a subspace containing the based point then � � � f ( ∂ [0; 1] d ) ⊂ A if t d = 0 f : [0; 1] d → X � Ω d ( X ; A ) = � f ( ∂ [0; 1] d ) = ∗ otherwise � and the pair (Ω d X ; Ω d ( X ; A )) is an algebra over SC d .

  11. Bimodules and Ibimodules Model Structures Main result and applications Bimodules over an S -operad Definition A bimodule M over an S -operad O , or O-bimodule , is given by a family of spaces { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S right operations ◦ i : M ( s 1 , .., s n ; s n +1 ) × O ( s ′ 1 , .., s ′ m ; s i ) → M ( s 1 , .., s i − 1 , s ′ 1 , .., s ′ m , s i +1 , .., s n ; s n +1 )

  12. Bimodules and Ibimodules Model Structures Main result and applications Bimodules over an S -operad Definition A bimodule M over an S -operad O , or O-bimodule , is given by a family of spaces { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S right operations ◦ i : M ( s 1 , .., s n ; s n +1 ) × O ( s ′ 1 , .., s ′ m ; s i ) → M ( s 1 , .., s i − 1 , s ′ 1 , .., s ′ m , s i +1 , .., s n ; s n +1 ) left operations γ l : O ( s 1 , .., s n ; s n +1 ) × M ( s 1 1 , .., s 1 p 1 ; s 1 ) × .. × M ( s n 1 , .., s n p n ; s n ) → M ( s 1 1 , .., s n p n ; s n +1 )

  13. Bimodules and Ibimodules Model Structures Main result and applications Bimodules over an S -operad Definition A bimodule M over an S -operad O , or O-bimodule , is given by a family of spaces { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S right operations ◦ i : M ( s 1 , .., s n ; s n +1 ) × O ( s ′ 1 , .., s ′ m ; s i ) → M ( s 1 , .., s i − 1 , s ′ 1 , .., s ′ m , s i +1 , .., s n ; s n +1 ) left operations γ l : O ( s 1 , .., s n ; s n +1 ) × M ( s 1 1 , .., s 1 p 1 ; s 1 ) × .. × M ( s n 1 , .., s n p n ; s n ) → M ( s 1 1 , .., s n p n ; s n +1 ) satisfying some axioms. Example If η : A ct → O is a map of { o ; c } -operads then η is also a map of A ct > 0 -bimodules.

  14. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Definition An infinitesimal bimodule M over an S -operad O , or O-Ibimodule , is: a family of spaces { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S right operations ◦ i : M ( s 1 , .., s n ; s n +1 ) × O ( s ′ 1 , .., s ′ m ; s i ) → M ( s 1 , .., s i − 1 , s ′ 1 , .., s ′ m , s i +1 , .., s n ; s n +1 )

  15. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Definition An infinitesimal bimodule M over an S -operad O , or O-Ibimodule , is: a family of spaces { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S right operations ◦ i : M ( s 1 , .., s n ; s n +1 ) × O ( s ′ 1 , .., s ′ m ; s i ) → M ( s 1 , .., s i − 1 , s ′ 1 , .., s ′ m , s i +1 , .., s n ; s n +1 ) left operations ◦ i : O ( s 1 , .., s n ; s n +1 ) × M ( s ′ 1 , .., s ′ m ; s i ) → M ( s 1 , .., s i − 1 , s ′ 1 , .., s ′ m , s i +1 , .., s n ; s n +1 )

  16. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Definition An infinitesimal bimodule M over an S -operad O , or O-Ibimodule , is: a family of spaces { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S right operations ◦ i : M ( s 1 , .., s n ; s n +1 ) × O ( s ′ 1 , .., s ′ m ; s i ) → M ( s 1 , .., s i − 1 , s ′ 1 , .., s ′ m , s i +1 , .., s n ; s n +1 ) left operations ◦ i : O ( s 1 , .., s n ; s n +1 ) × M ( s ′ 1 , .., s ′ m ; s i ) → M ( s 1 , .., s i − 1 , s ′ 1 , .., s ′ m , s i +1 , .., s n ; s n +1 ) satisfying some axioims. Example If η : A ct → M is a map between A ct > 0 -bimodules then M is also an A ct > 0 -Ibimodule.

  17. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o .

  18. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o .

  19. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o . ∈ A ct > 0 (2; c )

  20. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o .

  21. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o .

  22. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o . ← n operations { d 1 , . . . , d n }

  23. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o . ← n operations { d 1 , . . . , d n } ← 2 operations { d 0 , d n +1 }

  24. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o .

  25. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o .

  26. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o .

  27. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o . ∈ A ct > 0 (2; o )

  28. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o . ← n + 1 operations { d 1 , . . . , d n +1 }

  29. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o . ← n + 1 operations { d 1 , . . . , d n +1 } ← 1 operation d 0

  30. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o .

  31. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o . ∈ M n o = M ( n + 1; o )

  32. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o . Corollary 1 If η : A ct → M is a map of A ct > 0 -bimodules then: there exists a product: M n c × M m c → M n + m c and an action: M n c × M m o → M n + m o

  33. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o . Corollary 1 If η : A ct → M is a map of A ct > 0 -bimodules then: there exists a product: M n c × M m c → M n + m c and an action: M n c × M m o → M n + m o ∈ A ct > 0 (2; c )

  34. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o . Corollary 1 If η : A ct → M is a map of A ct > 0 -bimodules then: there exists a product: M n c × M m c → M n + m c and an action: M n c × M m o → M n + m o ∈ A ct > 0 (2; o )

  35. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o . Corollary 2 If η : A ct → M is a map of { o ; c } -operads then: M c is a multiplicative operad there exists an action: M n c × M m o → M n + m o and a product: M n o × M m o → M n + m o

  36. Bimodules and Ibimodules Model Structures Main result and applications Infinitesimal bimodules over an S -operad Theorem (D) If M is an A ct > 0 -Ibimodule then M • c := { M n c } and M • o := { M n o } are semi-cosimplicial spaces. Furthermore there exists a semi-cosimplicial map h : M c → M o . Corollary 2 If η : A ct → M is a map of { o ; c } -operads then: M c is a multiplicative operad there exists an action: M n c × M m o → M n + m o and a product: M n o × M m o → M n + m o

  37. Bimodules and Ibimodules Model Structures Main result and applications Model category L : C 1 ⇄ C 2 : R A model category cofibrantly generated ( I , J )

  38. Bimodules and Ibimodules Model Structures Main result and applications Model category L : C 1 ⇄ C 2 : R A model category A model category cofibrantly generated cofibrantly generated ( I , J ) ( LI , LJ )

  39. Bimodules and Ibimodules Model Structures Main result and applications Free S -operad F : Coll ( S ) ⇄ Operad S : U • objects are families of spaces { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N Coll ( S ) : s i ∈ S • maps are families of continuous maps

  40. � � � Bimodules and Ibimodules Model Structures Main result and applications Free S -operad F : Coll ( S ) ⇄ Operad S : U • objects are families of spaces { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N Coll ( S ) : s i ∈ S • maps are families of continuous maps T op has a cofibrantly generated model category : f : X → Y is a weak equivalence iff f ∗ n : π n ( X ) → π n ( Y ) are isomorphisms f : X → Y is a ”Serre” fibration iff for every CW -complex A there is a lift in every commutative diagram: A × { 0 } X � Y A × [0 ; 1]

  41. � � � Bimodules and Ibimodules Model Structures Main result and applications Free S -operad F : Coll ( S ) ⇄ Operad S : U • objects are families of spaces { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N Coll ( S ) : s i ∈ S • maps are families of continuous maps T op has a cofibrantly generated model category : f : X → Y is a weak equivalence iff f ∗ n : π n ( X ) → π n ( Y ) are isomorphisms f : X → Y is a ”Serre” fibration iff for every CW -complex A there is a lift in every commutative diagram: A × { 0 } X � Y A × [0 ; 1] k → ∆ n | n ∈ N , k ≤ n } I = { ∂ ∆ n → ∆ n | n ∈ N } J = {∧ n all the objects are fibrant

  42. � � � Bimodules and Ibimodules Model Structures Main result and applications Free S -operad F : Coll ( S ) ⇄ Operad S : U • objects are families of spaces { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N Coll ( S ) : s i ∈ S • maps are families of continuous maps T op has a cofibrantly generated model category : f : X → Y is a weak equivalence iff f ∗ n : π n ( X ) → π n ( Y ) are isomorphisms f : X → Y is a ”Serre” fibration iff for every CW -complex A there is a lift in every commutative diagram: A × { 0 } X � Y A × [0 ; 1] k → ∆ n | n ∈ N , k ≤ n } I = { ∂ ∆ n → ∆ n | n ∈ N } J = {∧ n all the objects are fibrant ⇒ Coll ( S ) inherits a cofibrantly generated model category.

  43. Bimodules and Ibimodules Model Structures Main result and applications Free S -operad F : Coll ( S ) ⇄ Operad S : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. For instance a point in F ( M )( s 1 , s 2 , s 3 , s 4 ; s 5 ) is given by: s 1 s 2 s 3 s 4 s 7 s 6 s 1 s 8 s 5

  44. Bimodules and Ibimodules Model Structures Main result and applications Free S -operad F : Coll ( S ) ⇄ Operad S : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. For instance a point in F ( M )( s 1 , s 2 , s 3 , s 4 ; s 5 ) is given by: s 1 s 2 s 3 s 4 M ( ; s 7 ) M ( s 2 , s 3 ; s 6 ) s 7 s 6 ∗ s 1 M ( s 6 , s 4 , s 7 ; s 8 ) s 1 s 8 M ( s 1 , s 8 ; s 5 ) s 5

  45. Bimodules and Ibimodules Model Structures Main result and applications Free S -operad F : Coll ( S ) ⇄ Operad S : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. The operadic composition: F ( M )( s 1 , s 2 , s 3 : s 4 ) F ( M )( s 6 , s 7 : s 1 ) F ( M )( s 6 , s 7 , s 2 , s 3 : s 4 )

  46. Bimodules and Ibimodules Model Structures Main result and applications Free bimodule over an S -operad O B O : Coll ( S ) ⇄ Bimod O : U

  47. Bimodules and Ibimodules Model Structures Main result and applications Free bimodule over an S -operad O B O : Coll ( S ) ⇄ Bimod O : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. For instance a point in B O ( M )( s 1 , s 2 , s 3 ; s 4 ) is given by:

  48. Bimodules and Ibimodules Model Structures Main result and applications Free bimodule over an S -operad O B O : Coll ( S ) ⇄ Bimod O : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. For instance a point in B O ( M )( s 1 , s 2 , s 3 ; s 4 ) is given by:

  49. Bimodules and Ibimodules Model Structures Main result and applications Free bimodule over an S -operad O B O : Coll ( S ) ⇄ Bimod O : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. For instance a point in B O ( M )( s 1 , s 2 , s 3 ; s 4 ) is given by:

  50. Bimodules and Ibimodules Model Structures Main result and applications Free bimodule over an S -operad O B O : Coll ( S ) ⇄ Bimod O : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. For instance a point in B O ( M )( s 1 , s 2 , s 3 ; s 4 ) is given by:

  51. Bimodules and Ibimodules Model Structures Main result and applications Free bimodule over an S -operad O B O : Coll ( S ) ⇄ Bimod O : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. The right operations ◦ i : B O ( M )( s 1 , s 2 , s 3 ; s 4 ) O ( s 6 , s 7 ; s 1 ) B O ( M )( s 6 , s 7 , s 2 , s 3 ; s 4 )

  52. Bimodules and Ibimodules Model Structures Main result and applications Free bimodule over an S -operad O B O : Coll ( S ) ⇄ Bimod O : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. The right operations ◦ i : B O ( M )( s 1 , s 2 , s 3 ; s 4 ) O ( s 6 , s 7 ; s 1 ) B O ( M )( s 1 , s 6 , s 7 , s 3 ; s 4 )

  53. Bimodules and Ibimodules Model Structures Main result and applications Free bimodule over an S -operad O B O : Coll ( S ) ⇄ Bimod O : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. The left operations γ l :

  54. Bimodules and Ibimodules Model Structures Main result and applications Free bimodule over an S -operad O B O : Coll ( S ) ⇄ Bimod O : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. The left operations γ l :

  55. Bimodules and Ibimodules Model Structures Main result and applications Free infinitesimal bimodule over an S -operad O I b O : Coll ( S ) ⇄ Ibimod O : U

  56. Bimodules and Ibimodules Model Structures Main result and applications Free infinitesimal bimodule over an S -operad O I b O : Coll ( S ) ⇄ Ibimod O : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. For instance a point in I b O ( M )( s 1 , s 2 , s 3 , s 4 ; s 5 ) is given by:

  57. Bimodules and Ibimodules Model Structures Main result and applications Free infinitesimal bimodule over an S -operad O I b O : Coll ( S ) ⇄ Ibimod O : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. For instance a point in I b O ( M )( s 1 , s 2 , s 3 , s 4 ; s 5 ) is given by:

  58. Bimodules and Ibimodules Model Structures Main result and applications Free infinitesimal bimodule over an S -operad O I b O : Coll ( S ) ⇄ Ibimod O : U Let { M ( s 1 , . . . , s n ; s n +1 ) } n ∈ N s i ∈ S be a family of spaces. The left operations ◦ i : O ( s 1 , s 2 ; s 3 ) I b O ( M )( s 4 , s 5 , s 6 ; s 2 ) I b O ( M )( s 1 , s 4 , s 5 , s 6 ; s 3 )

  59. Bimodules and Ibimodules Model Structures Main result and applications Cofibrant replacements � A s > 0 − Ibimodules � A s > 0 − Ibimodules maps ⇔ � semi-cosimplicial spaces � semi-cosimplicial maps

  60. Bimodules and Ibimodules Model Structures Main result and applications Cofibrant replacements � A s > 0 − Ibimodules � A s > 0 − Ibimodules maps ⇔ � semi-cosimplicial spaces � semi-cosimplicial maps Theorem (V.Turchin) A cofibrant replacement of A s as an A s > 0 -Ibimodule is given by the semi-cosimplicial space ∆.

  61. Bimodules and Ibimodules Model Structures Main result and applications Cofibrant replacements � A s > 0 − Ibimodules � A s > 0 − Ibimodules maps ⇔ � semi-cosimplicial spaces � semi-cosimplicial maps Theorem (V.Turchin) A cofibrant replacement of A s as an A s > 0 -Ibimodule is given by the semi-cosimplicial space ∆. � A ct > 0 − Ibimodule M ⇒ � a semi-cosimplicial map h : M • c → M • o

  62. Bimodules and Ibimodules Model Structures Main result and applications Cofibrant replacements � A s > 0 − Ibimodules � A s > 0 − Ibimodules maps ⇔ � semi-cosimplicial spaces � semi-cosimplicial maps Theorem (V.Turchin) A cofibrant replacement of A s as an A s > 0 -Ibimodule is given by the semi-cosimplicial space ∆. � A ct > 0 − Ibimodule M ⇒ � a semi-cosimplicial map h : M • c → M • o Consequence If M is an A ct > 0 -Ibimodule then: Ibimod h A s > 0 ( A s ; M c ) ≃ Ibimod A s > 0 (∆; M c ) = Nat (∆ ; M c ) = sTot ( M c ) Ibimod h A s > 0 ( A s ; M o ) ≃ Ibimod A s > 0 (∆; M o ) = Nat (∆ ; M o ) = sTot ( M o )

  63. Bimodules and Ibimodules Model Structures Main result and applications Cofibrant replacements � A ct > 0 − Ibimodule M ⇒ � a semi-cosimplicial map h : M • c → M • o Theorem (D) △ of A ct as an A ct > 0 -Ibimodule is given by the A cofibrant replacement � pair of semi-cosimplicial spaces: △ ( n + 1; o ) = ∆ n × [0 ; 1] △ ( n ; c ) = ∆ n � and � where the semi-cosimplicial map h : ∆ n → ∆ n × [0 ; 1] is defined by: ( t 1 ≤ · · · ≤ t n ) �→ ( t 1 ≤ · · · ≤ t n ) × { 1 }

  64. Bimodules and Ibimodules Model Structures Main result and applications Cofibrant replacements � A ct > 0 − Ibimodule M ⇒ � a semi-cosimplicial map h : M • c → M • o Theorem (D) △ of A ct as an A ct > 0 -Ibimodule is given by the A cofibrant replacement � pair of semi-cosimplicial spaces: △ ( n + 1; o ) = ∆ n × [0 ; 1] △ ( n ; c ) = ∆ n � and � where the semi-cosimplicial map h : ∆ n → ∆ n × [0 ; 1] is defined by: ( t 1 ≤ · · · ≤ t n ) �→ ( t 1 ≤ · · · ≤ t n ) × { 1 } Theorem (D) Let M be an A ct > 0 -Ibimodule. One has: Ibimod h △ ; M ) A ct > 0 ( A ct ; M ) ≃ Ibimod A ct > 0 ( � ≃ Ibimod A s > 0 (∆; M c ) ≃ sTot ( M c )

  65. Bimodules and Ibimodules Model Structures Main result and applications Cofibrant replacements � M is an A ct > 0 − bimodule ⇒ � M c is an A s > 0 − bimodule Theorem (V.Turchin) If η : A ct → M is a map of A ct > 0 -bimodules and M (0; c ) ≃ ∗ then: sTot ( M c ) ≃ Ω Bimod h A s > 0 ( A s > 0 ; M c ) sTot ( M o ) ≃ Ω???

  66. Bimodules and Ibimodules Model Structures Main result and applications Cofibrant replacements � M is an A ct > 0 − bimodule ⇒ � M c is an A s > 0 − bimodule Theorem (V.Turchin) If η : A ct → M is a map of A ct > 0 -bimodules and M (0; c ) ≃ ∗ then: sTot ( M c ) ≃ Ω Bimod h A s > 0 ( A s > 0 ; M c ) sTot ( M o ) ≃ Ω??? � M is an { o ; c } − operad pointed ⇒ � M c is a multiplicative operad � M o is an A s > 0 − bimodule

  67. Bimodules and Ibimodules Model Structures Main result and applications Cofibrant replacements � M is an A ct > 0 − bimodule ⇒ � M c is an A s > 0 − bimodule Theorem (V.Turchin) If η : A ct → M is a map of A ct > 0 -bimodules and M (0; c ) ≃ ∗ then: sTot ( M c ) ≃ Ω Bimod h A s > 0 ( A s > 0 ; M c ) sTot ( M o ) ≃ Ω??? � M is an { o ; c } − operad pointed ⇒ � M c is a multiplicative operad � M o is an A s > 0 − bimodule Theorem (V.Turchin) If η : A ct → M is a map of { o ; c } -operads and M 0 c ≃ M 1 c ≃ M 0 o ≃ ∗ then: sTot ( M c ) ≃ Ω 2 Operad h ( A s > 0 ; M c ) A s > 0 ( A s > 0 ; M o ) ≃ Ω 2 ??? sTot ( M o ) ≃ Ω Bimod h

  68. Bimodules and Ibimodules Model Structures Main result and applications Main result Theorem (D) If η : A ct → M is an A ct > 0 -bimodules map then sTot ( M o ) is weakly equivalent to: � � Bimod h A s > 0 ( A s > 0 ; M c ) ; Bimod h Ω A ct > 0 ( A ct > 0 ; M )

  69. Bimodules and Ibimodules Model Structures Main result and applications Main result Theorem (D) If η : A ct → M is an A ct > 0 -bimodules map then sTot ( M o ) is weakly equivalent to: � � Bimod h A s > 0 ( A s > 0 ; M c ) ; Bimod h Ω A ct > 0 ( A ct > 0 ; M ) Sketch of proof: Determine a cofibrant replacement � of A ct > 0 as an A ct > 0 -bimodule

  70. Bimodules and Ibimodules Model Structures Main result and applications Main result Theorem (D) If η : A ct → M is an A ct > 0 -bimodules map then sTot ( M o ) is weakly equivalent to: � � Bimod h A s > 0 ( A s > 0 ; M c ) ; Bimod h Ω A ct > 0 ( A ct > 0 ; M ) Sketch of proof: Determine a cofibrant replacement � of A ct > 0 as an A ct > 0 -bimodule Determine a sub-operad M ∗ such that: sTot ( M o ) ≃ Bimod h A ct > 0 ( A ct > 0 ; M ∗ )

  71. Bimodules and Ibimodules Model Structures Main result and applications Main result Theorem (D) If η : A ct → M is an A ct > 0 -bimodules map then sTot ( M o ) is weakly equivalent to: � � Bimod h A s > 0 ( A s > 0 ; M c ) ; Bimod h Ω A ct > 0 ( A ct > 0 ; M ) Sketch of proof: Determine a cofibrant replacement � of A ct > 0 as an A ct > 0 -bimodule Determine a sub-operad M ∗ such that: sTot ( M o ) ≃ Bimod h A ct > 0 ( A ct > 0 ; M ∗ ) Prove that Bimod h A ct > 0 ( A ct > 0 ; M ∗ ) is equipped with an inclusion into � � Bimod h A s > 0 ( A s > 0 ; M c ) ; Bimod h Ω A ct > 0 ( A ct > 0 ; M ) which is a weak equivalence.

  72. Bimodules and Ibimodules Model Structures Main result and applications Main result Theorem (D) If η : A ct → M is an A ct > 0 -bimodules map then sTot ( M o ) is weakly equivalent to: � � Bimod h A s > 0 ( A s > 0 ; M c ) ; Bimod h Ω A ct > 0 ( A ct > 0 ; M ) sTot ( M c ) ≃ Ω Bimod h A s > 0 ( A s > 0 ; M c ) � � Bimod h A s > 0 ( A s > 0 ; M c ) ; Bimod h sTot ( M o ) ≃ Ω A ct > 0 ( A ct > 0 ; M ) ⇒ which is an algebra over SC 1 .

  73. Bimodules and Ibimodules Model Structures Main result and applications Main result Theorem (D) If η : A ct → M is an A ct > 0 -bimodules map then sTot ( M o ) is weakly equivalent to: � � Bimod h A s > 0 ( A s > 0 ; M c ) ; Bimod h Ω A ct > 0 ( A ct > 0 ; M ) Theorem (D) If η : A ct → M is a map of { o ; c } -operads and M (1; c ) ≃ M (1; o ) ≃ ∗ then sTot ( M o ) is weakly equivalent to: Ω 2 � � Operad h ( A s > 0 ; M c ) ; Operad h { o ; c } ( A ct > 0 ; M )

  74. Bimodules and Ibimodules Model Structures Main result and applications Main result Theorem (D) If η : A ct → M is an A ct > 0 -bimodules map then sTot ( M o ) is weakly equivalent to: � � Bimod h A s > 0 ( A s > 0 ; M c ) ; Bimod h Ω A ct > 0 ( A ct > 0 ; M ) Theorem (D) If η : A ct → M is a map of { o ; c } -operads and M (1; c ) ≃ M (1; o ) ≃ ∗ then sTot ( M o ) is weakly equivalent to: Ω 2 � � Operad h ( A s > 0 ; M c ) ; Operad h { o ; c } ( A ct > 0 ; M ) Sketch of proof: Bimod h A s > 0 ( A s > 0 ; M c ) ≃ Ω Operad h ( A s > 0 ; M c ) Bimod h A ct > 0 ( A ct > 0 ; M ) ≃ Ω Operad h { o ; c } ( A ct > 0 ; M )

  75. Bimodules and Ibimodules Model Structures Main result and applications Main result Theorem (D) If η : A ct → M is an A ct > 0 -bimodules map then sTot ( M o ) is weakly equivalent to: � � Bimod h A s > 0 ( A s > 0 ; M c ) ; Bimod h Ω A ct > 0 ( A ct > 0 ; M ) Theorem (D) If η : A ct → M is a map of { o ; c } -operads and M (1; c ) ≃ M (1; o ) ≃ ∗ then sTot ( M o ) is weakly equivalent to: Ω 2 � � Operad h ( A s > 0 ; M c ) ; Operad h { o ; c } ( A ct > 0 ; M ) sTot ( M c ) ≃ Ω 2 Operad h ( A s > 0 ; M c ) sTot ( M o ) ≃ Ω 2 � � Operad h ( A s > 0 ; M c ) ; Operad h { o ; c } ( A ct > 0 ; M ) ⇒ which is an algebra over SC 2 .

  76. Bimodules and Ibimodules Model Structures Main result and applications Structure on the singular homology Consequence If M is a pointed { o ; c } -operad ( ∃ η : A ct → M ) then the pair � � H ∗ ( sTot ( M c )) ; H ∗ ( sTot ( M o )) is an sc 2 -algebra.

  77. Bimodules and Ibimodules Model Structures Main result and applications Structure on the singular homology Consequence If M is a pointed { o ; c } -operad ( ∃ η : A ct → M ) then the pair � � H ∗ ( sTot ( M c )) ; H ∗ ( sTot ( M o )) is an sc 2 -algebra. ◮ a bracket of degre 1: [ − ; − ] : H p ( sTot ( M c )) ⊗ H q ( sTot ( M c )) → H p + q +1 ( sTot ( M c )) ◮ a commutative product of degre 0: − ∗ − : H p ( sTot ( M c )) ⊗ H q ( sTot ( M c )) → H p + q ( sTot ( M c ))

  78. Bimodules and Ibimodules Model Structures Main result and applications Structure on the singular homology Consequence If M is a pointed { o ; c } -operad ( ∃ η : A ct → M ) then the pair � � H ∗ ( sTot ( M c )) ; H ∗ ( sTot ( M o )) is an sc 2 -algebra. ◮ a bracket of degre 1: [ − ; − ] : H p ( sTot ( M c )) ⊗ H q ( sTot ( M c )) → H p + q +1 ( sTot ( M c )) ◮ a commutative product of degre 0: − ∗ − : H p ( sTot ( M c )) ⊗ H q ( sTot ( M c )) → H p + q ( sTot ( M c )) ◮ an associative product of degre 0: − ∗ i − : H p ( sTot ( M o )) ⊗ H q ( sTot ( M o )) → H p + q ( sTot ( M o )) ◮ a module structure of degre 0 over the commutative product: − ∗ e − : H p ( sTot ( M c )) ⊗ H q ( sTot ( M o )) → H p + q ( sTot ( M o ))

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend