notes on operads
play

NOTES ON OPERADS HSUAN-YI LIAO Abstract. This note is for a talk on - PDF document

NOTES ON OPERADS HSUAN-YI LIAO Abstract. This note is for a talk on operads. The main reference is [1]. The books [2, 3] are also useful. Contents 1. Operad 1 1.1. Tree 1 1.2. Operad and cooperad 2 2. Convolution Lie algebra 3 2.1.


  1. NOTES ON OPERADS HSUAN-YI LIAO Abstract. This note is for a talk on operads. The main reference is [1]. The books [2, 3] are also useful. Contents 1. Operad 1 1.1. Tree 1 1.2. Operad and cooperad 2 2. Convolution Lie algebra 3 2.1. Example: cooperad of cocommutative coalgebras 4 2.2. Cobar construction 5 References 5 1. Operad 1.1. Tree. Definition 1.1. A graph Γ = ( V Γ , E Γ ) is a pair of sets where E Γ is contained in the power set 2 V Γ (the set of subsets in V Γ ). A directed graph is a graph Γ = ( V Γ , E Γ ) with source map and target map s, t : E Γ → V Γ such that e = { s ( e ) , t ( e ) } for any e ∈ E Γ . An isomorphism Φ : Γ → ˜ Γ of graphs from Γ = ( V Γ , E Γ ) to ˜ Γ = ( V ˜ Γ , E ˜ Γ ) consists of bijections Φ V : V Γ → V ˜ Γ and Φ E : E Γ → E ˜ Γ such that Φ E ( { v, w } ) = { Φ V ( v ) , Φ V ( w ) } for any { v, w } ∈ E Γ . An isomorphism of directed graphs is an isomorphism of graphs which is compatible with the source and target maps. Let v ∈ V Γ . We denote A ( v ) := { e ∈ E Γ | v ∈ e } . The number | A ( v ) | is called the valency of v . An edge e ∈ E Γ is called a cycle if | e | = 1 . Definition 1.2. A tree T = ( v o , V T , E T ) is a connected graph without cycles which has a special vertex v o ∈ V T , called root vertex , such that | A ( v o ) | = 1 . The edge adjacent to v o is called the root edge , denoted e o . Non-root vertexes of valency 1 are called leaves . The set of leaves of T is denoted L ( T ) . A vertex is called internal if it is neither a root nor a leaf. Remark 1.3. A tree, with the direction towards the root, is naturally a directed graph. Definition 1.4. A tree T is called planar if for every internal vertex of T , the set t − 1 ( v ) carries a total order. An n -labeled planar tree is a planar tree equipped with an injective map l : { 1 , · · · , n } → L ( T ) . (The map l is not required to be monotone.) A vertex v of an n -labeled planar tree T is called nodal if v ∈ N T := V T \ { v o } \ im l . Let S, T be n -labeled planar trees. A (non-planar) morphism Φ : S → T is a pair of bijections Φ V : V S → V T and Φ E : E S → E T which are compatible with source and target maps, and Φ V ◦ l S = l T . The category 1

  2. 2 HSUAN-YI LIAO of n -labeled planar trees is denoted Tree( n ) . The full subcategory of n -labeled planar trees with k nodal vertexes is denoted Tree k ( n ) . Remark 1.5. There is a natural left S n -action on the objects of Tree( n ) . 1.2. Operad and cooperad. Let C be the category of cochain complexes. Definition 1.6. A S -module is a sequence { P ( n ) } n ≥ 0 of objects in C such that for each n ∈ N 0 , the object P ( n ) is equipped with a left S n -action. Let T ∈ Tree( n ) . Define � P ( | t − 1 ( v ) | ) P ( T ) := v ∈ N T where the tensor product is done in the order induced by T . Definition 1.7. A (dg) operad is an S -module { P ( n ) } n ≥ 0 equipped with “composition maps” µ T : P ( T ) → P ( n ) for any T ∈ Tree( n ) , and equipped with a unit u : k → P (1) which satisfies a list of axioms (“associativity,” “ S -equivalent,” “unit”). Proposition 1.8. Let V be a cochain complex. The direct sum ∞ � P ( n ) ⊗ V ⊗ n � � P ( V ) := S n n =0 with the natural P -algebra structure is the free P -algebra generated by V . Consider the S -module s 1 − n sign n , � n ≥ 1; Λ( n ) := 0 , n = 0 , where sign n = k with the S n -action σ · 1 := ( − 1) σ · 1 . The compositions are defined by 1 m ◦ i 1 n := ( − 1) (1 − n )( i − 1) 1 n + m − 1 . Remark 1.9. The sign assignment of insertion is different from [1] . It is not clear to the author how the sign convention was chosen in [1] . Let V be a cochain complex, and let Φ : Λ → End V be a morphism of dg operads. Let ˜ Φ : Com → End V [1] be the map � n j =1 ( n − j ) | v j | s − 1 ◦ Φ(1 n )( sv 1 , · · · , sv n ) . ˜ Φ(˜ 1 n )( v 1 , · · · , v n ) := ( − 1) Proposition 1.10. The assignment Λ - Alg → Com - Alg 1 : Φ �→ ˜ Φ is a bijection, where V ∈ Com - Alg 1 iff V [1] ∈ Com - Alg . Proof. We prove ˜ Φ is a morphism of operads. The other parts of proof should be easy. Since Φ is a morphism, we have Φ(1 n )( v σ (1) , · · · , v σ ( n ) ) = ǫ ( σ, v )( − 1) σ Φ(1 n )( v 1 , · · · , v n )

  3. NOTES ON OPERADS 3 Then � n j =1 ( n − j ) | v j | s − 1 ◦ Φ( σ · 1 n )( sv 1 , · · · , sv n ) Φ( σ ⋆ ˜ ˜ 1 n )( v 1 , · · · , v n ) = ( − 1) σ ( − 1) � n j =1 ( n − j ) | v j | s − 1 ◦ Φ(1 n )( sv σ (1) , · · · , sv σ ( n ) ) = ( − 1) σ ǫ ( σ, sv )( − 1) � n j =1 ( n − j ) | v j | s − 1 ◦ Φ(1 n )( sv σ (1) , · · · , sv σ ( n ) ) = ǫ ( σ, v )( − 1) = ˜ Φ(˜ � � 1 n ) σ ⋆ ( v 1 ⊗ · · · v n ) . and ˜ Φ(˜ ◦ i ˜ 1 m ¯ 1 n )( v 1 , · · · , v m + n − 1 ) � m + n − 1 ( m + n − 1 − j ) | v j | s − 1 ◦ Φ(1 m + n − 1 )( sv 1 , · · · , sv m + n − 1 ) = ( − 1) j =1 � m + n − 1 ( m + n − 1 − j ) | v j | s − 1 ◦ Φ(1 m ◦ i 1 n )( sv 1 , · · · , sv m + n − 1 ) = ( − 1) (1 − n )( i − 1) ( − 1) j =1 � m + n − 1 ( m + n − 1 − j ) | v j | ( − 1) | Φ(1 n ) | ( i − 1+ � i − 1 = ( − 1) (1 − n )( i − 1) ( − 1) j =1 | v j | ) j =1 · s − 1 ◦ Φ(1 m ) sv 1 , · · · , sv i − 1 , ss − 1 Φ(1 n )( sv i , · · · , sv i + n − 1 ) , sv i + n , · · · , sv m + n − 1 � � � m + n − 1 ( m + n − 1 − j ) | v j | ( − 1) (1 − n )( i − 1+ � i − 1 = ( − 1) (1 − n )( i − 1) ( − 1) j =1 | v j | ) j =1 � i + n − 1 � i − 1 � m + n − 1 � i + n − 1 ( n + i − 1 − j ) | v j | ( − 1) j =1 ( m − j ) | v j | ( − 1) j = i + n ( m + n − 1 − j ) | v j | ( − 1) ( m − i ) | v j | · ( − 1) j = i j = i · ˜ Φ(˜ v 1 , · · · , v i − 1 , ˜ Φ(˜ � � 1 m ) 1 n )( v i , · · · , v i + n − 1 ) , v i + n , · · · , v m + n − 1 = ˜ v 1 , · · · , v i − 1 , ˜ Φ(˜ Φ(˜ � � 1 m ) 1 n )( v i , · · · , v i + n − 1 ) , v i + n , · · · , v m + n − 1 � ˜ Φ(˜ ◦ i ˜ Φ(˜ �� � = 1 m )¯ 1 n ) v 1 , · · · , v m + n − 1 . � Definition 1.11. A (dg) cooperad is an S -module { Q ( n ) } n ≥ 0 equipped with “decomposition maps” ∆ T : Q ( n ) → Q ( T ) for any T ∈ Tree( n ) , and equipped with a counit ˜ u : Q (1) → k which satisfies a list of axioms (“coassocia- tivity,” “ S -equivalent,” “counit”). A cooperad Q is coaugmented if we have a cooperad morphism ǫ : ∗ → Q , where ∗ is the natural cooparad with ∗ (1) = k and ∗ ( n ) = 0 if n � = 1 . We denote the pseudo-cooperad coker( ǫ ) by Q o . Example 1.12. The S -module Λ also caries a cooperad structure: ∆ i : Λ m + n − 1 → Λ m ⊗ Λ n , ∆ i (1 m + n − 1 ) := ( − 1) (1 − n )( i − 1) · 1 m ⊗ 1 n . 2. C onvolution Lie algebra The notation π 0 denotes the collection of isomorphism classes in a category. Let P be a dg (pseudo-)operad, and Q be a dg (pseudo-)cooperad. Consider � Conv( Q, P ) := Hom S n ( Q ( n ) , P ( n )) n ≥ 0 with the operation • defined by the sum of the compositions ∆ T f ⊗ g µ T Q ( n ) − − → Q ( n 1 ) ⊗ Q ( n 2 ) − − → P ( n 1 ) ⊗ P ( n 2 ) − − → P ( n )

  4. 4 HSUAN-YI LIAO where T ∈ Tree 2 ( n ) , n i = | t − 1 ( v i ) | , N T = { v 1 , v 2 } . More precisely, � f • g ( x ) := µ T ◦ ( f ⊗ g ) ◦ ∆ T ( x ) T ∈ π 0 (Tree 2 ( n )) for x ∈ Q ( n ) . Lemma 2.1. The bracket [ f, g ] := f • g − ( − 1) | f || g | g • f satisfies the Jacobi identity. The differentials on P and Q induce a differential on the convolution Conv( Q, P ) . Proposition 2.2. The convolution Conv( Q, P ) is a dgla. 2.1. Example: cooperad of cocommutative coalgebras. Let coCom be the cooperad of cocommutative coassociative coalgebras. More precisely, � 0 , n = 0; coCom( n ) := k · δ n , n � = 0 , with trivial S n -action and with the cocompositions ∆ T : coCom( n ) → coCom( n 1 ) ⊗ coCom( n 2 ) : δ n �→ δ n 1 ⊗ δ n 2 for T ∈ Tree 2 ( n ) . We endow coCom with the coaugmentation ǫ : ∗ → coCom : 1 �→ δ 0 . If V is a cochain complex, then coCom( V ) ∼ = S ≥ 1 V with the differential induced from V and the natural comultiplication. Proposition 2.3. Let V be a cochain complex. Then Conv(coCom o , End V ) ∼ = coDer ′ (coCom( V )) , where coDer ′ (coCom( V )) is the set of coderivations on coCom( V ) ∼ = S ≥ 1 V which vanish on V . Proof. Note that coDer ′ (coCom( V )) ∼ = Hom( S ≥ 2 V, V ) ∞ ∼ � Hom( S n V, V ) = n =2 ∞ ∼ � k , Hom( S n V, V ) � � Hom = n =2 ∞ ∼ � coCom o ( n ) , Hom( S n V, V ) � � = Hom n =0 ∞ ∼ � coCom o ( n ) , Hom( V ⊗ n , V ) � � Hom S n = . n =0 It’s straightforward to check the isomorphisms preserve the dgla structures. � Remark 2.4. According to [1] , the above proposition is true for general coaugmented cooperads.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend