local to global principles in floer theory
play

Local-to-Global Principles in Floer Theory Umut Varolgunes Stanford - PowerPoint PPT Presentation

Local-to-Global Principles in Floer Theory Umut Varolgunes Stanford University November 14, 2019 Umut Varolgunes Relative Floer theory Hamiltonian Floer theory Umut Varolgunes Relative Floer theory Hamiltonian Floer theory ( M , )


  1. Local-to-Global Principles in Floer Theory Umut Varolgunes Stanford University November 14, 2019 Umut Varolgunes Relative Floer theory

  2. Hamiltonian Floer theory Umut Varolgunes Relative Floer theory

  3. Hamiltonian Floer theory ( M , ω ) symplectic manifold. ( L , J L ) tautologically unobstructed Lagrangian. Assume that they are closed for now. Umut Varolgunes Relative Floer theory

  4. Hamiltonian Floer theory ( M , ω ) symplectic manifold. ( L , J L ) tautologically unobstructed Lagrangian. Assume that they are closed for now. Given non-degenerate S 1 / I -dependent Hamiltonian H , we obtain chain complexes over Λ ≥ 0 = Q [[ T R ]]: CF ( H , Λ ≥ 0 ) / CF ( L , J L , H , Λ ≥ 0 ) (1) generated by 1-periodic orbits / 1-chords on L 1 differential counts Floer solutions with weights T topE ( u ) , where 2 � � � u ∗ ω + topE ( u ) = Hdt − Hdt ≥ 0 out in Umut Varolgunes Relative Floer theory

  5. Acceleration data Umut Varolgunes Relative Floer theory

  6. Acceleration data Acceleration data for compact K ⊂ M is a family of time dependent ( S 1 or I ) Hamiltonians H s , s ∈ [1 , ∞ ) such that: H s ( t , x ) < 0, for every t , s and x ∈ K . 1 � 0 , x ∈ K , H s ( t , x ) − − − − → ∈ K , for every t 2 s → + ∞ + ∞ , x / H s ( t , x ) ≥ H s ′ ( t , x ), whenever s ≥ s ′ 3 For n ∈ N , the flow of H n satisfies non-degeneracy 4 Umut Varolgunes Relative Floer theory

  7. Acceleration data Acceleration data for compact K ⊂ M is a family of time dependent ( S 1 or I ) Hamiltonians H s , s ∈ [1 , ∞ ) such that: H s ( t , x ) < 0, for every t , s and x ∈ K . 1 � 0 , x ∈ K , H s ( t , x ) − − − − → ∈ K , for every t 2 s → + ∞ + ∞ , x / H s ( t , x ) ≥ H s ′ ( t , x ), whenever s ≥ s ′ 3 For n ∈ N , the flow of H n satisfies non-degeneracy 4 C ( H s ) := CF ( H 1 , Λ ≥ 0 ) → CF ∗ ( H 2 , Λ ≥ 0 ) → . . . C ( L , H s ) := CF ( L , H 1 , Λ ≥ 0 ) → CF ∗ ( L , H 2 , Λ ≥ 0 ) → . . . Umut Varolgunes Relative Floer theory

  8. Acceleration data Acceleration data for compact K ⊂ M is a family of time dependent ( S 1 or I ) Hamiltonians H s , s ∈ [1 , ∞ ) such that: H s ( t , x ) < 0, for every t , s and x ∈ K . 1 � 0 , x ∈ K , H s ( t , x ) − − − − → ∈ K , for every t 2 s → + ∞ + ∞ , x / H s ( t , x ) ≥ H s ′ ( t , x ), whenever s ≥ s ′ 3 For n ∈ N , the flow of H n satisfies non-degeneracy 4 C ( H s ) := CF ( H 1 , Λ ≥ 0 ) → CF ∗ ( H 2 , Λ ≥ 0 ) → . . . C ( L , H s ) := CF ( L , H 1 , Λ ≥ 0 ) → CF ∗ ( L , H 2 , Λ ≥ 0 ) → . . . The maps are given by continuation maps. Monotonicity requirement (3) implies that topological energies are all non-negative. These are “1-ray diagrams” over Λ ≥ 0 . Umut Varolgunes Relative Floer theory

  9. Definition of the invariants Umut Varolgunes Relative Floer theory

  10. Definition of the invariants We use the telescope construction of Abouzaid-Seidel as a convenient model for homotopy colimits of 1-rays. Umut Varolgunes Relative Floer theory

  11. Definition of the invariants We use the telescope construction of Abouzaid-Seidel as a convenient model for homotopy colimits of 1-rays. Completion functor for modules over Λ ≥ 0 : A �→ � A := lim A ⊗ Λ ≥ 0 Λ ≥ 0 / Λ ≥ r ← − − r ≥ 0 Umut Varolgunes Relative Floer theory

  12. Definition of the invariants We use the telescope construction of Abouzaid-Seidel as a convenient model for homotopy colimits of 1-rays. Completion functor for modules over Λ ≥ 0 : A �→ � A := lim A ⊗ Λ ≥ 0 Λ ≥ 0 / Λ ≥ r ← − − r ≥ 0 SC M ( K , H s ) := � tel ( C ( H s )) (degree-wise completion, whatever the grading is) Umut Varolgunes Relative Floer theory

  13. Definition of the invariants We use the telescope construction of Abouzaid-Seidel as a convenient model for homotopy colimits of 1-rays. Completion functor for modules over Λ ≥ 0 : A �→ � A := lim A ⊗ Λ ≥ 0 Λ ≥ 0 / Λ ≥ r ← − − r ≥ 0 SC M ( K , H s ) := � tel ( C ( H s )) (degree-wise completion, whatever the grading is) LC M ( K , H s ; L ) := � tel ( C ( L , H s )) Umut Varolgunes Relative Floer theory

  14. Definition of the invariants We use the telescope construction of Abouzaid-Seidel as a convenient model for homotopy colimits of 1-rays. Completion functor for modules over Λ ≥ 0 : A �→ � A := lim A ⊗ Λ ≥ 0 Λ ≥ 0 / Λ ≥ r ← − − r ≥ 0 SC M ( K , H s ) := � tel ( C ( H s )) (degree-wise completion, whatever the grading is) LC M ( K , H s ; L ) := � tel ( C ( L , H s )) Homologies are “independent of choices”: SH M ( K ) / LH M ( K ; L ) Umut Varolgunes Relative Floer theory

  15. Definition of the invariants We use the telescope construction of Abouzaid-Seidel as a convenient model for homotopy colimits of 1-rays. Completion functor for modules over Λ ≥ 0 : A �→ � A := lim A ⊗ Λ ≥ 0 Λ ≥ 0 / Λ ≥ r ← − − r ≥ 0 SC M ( K , H s ) := � tel ( C ( H s )) (degree-wise completion, whatever the grading is) LC M ( K , H s ; L ) := � tel ( C ( L , H s )) Homologies are “independent of choices”: SH M ( K ) / LH M ( K ; L ) Automatically get restriction maps for K ⊂ K ′ with the presheaf property Umut Varolgunes Relative Floer theory

  16. Remarks Umut Varolgunes Relative Floer theory

  17. Remarks The main point for well-definedness: any Floer theoretic diagram of chain complexes over Λ ≥ 0 can be “filled” to a homotopy coherent Floer theoretic diagram (only monotone choices are allowed). Umut Varolgunes Relative Floer theory

  18. Remarks The main point for well-definedness: any Floer theoretic diagram of chain complexes over Λ ≥ 0 can be “filled” to a homotopy coherent Floer theoretic diagram (only monotone choices are allowed). Basically a version of Floer-Hofer’s symplectic cohomology (the original one) Umut Varolgunes Relative Floer theory

  19. Remarks The main point for well-definedness: any Floer theoretic diagram of chain complexes over Λ ≥ 0 can be “filled” to a homotopy coherent Floer theoretic diagram (only monotone choices are allowed). Basically a version of Floer-Hofer’s symplectic cohomology (the original one) Similar invariants by Seidel (“Speculations on pair-of-pants decompositions”), Groman, McLean, Venkatesh (maybe Floer?) Umut Varolgunes Relative Floer theory

  20. Remarks The main point for well-definedness: any Floer theoretic diagram of chain complexes over Λ ≥ 0 can be “filled” to a homotopy coherent Floer theoretic diagram (only monotone choices are allowed). Basically a version of Floer-Hofer’s symplectic cohomology (the original one) Similar invariants by Seidel (“Speculations on pair-of-pants decompositions”), Groman, McLean, Venkatesh (maybe Floer?) With M. Abouzaid - Y. Groman: working on extending definition to unobstructed Lagrangians (and their bounding cochains). Significantly harder. Umut Varolgunes Relative Floer theory

  21. Dependence on K Umut Varolgunes Relative Floer theory

  22. Dependence on K SH M ( ∅ ) = LH M ( ∅ ; L ) = 0 (good exercise) Umut Varolgunes Relative Floer theory

  23. Dependence on K SH M ( ∅ ) = LH M ( ∅ ; L ) = 0 (good exercise) SH M ( M ) = H ( M , Λ ≥ 0 ) ⊗ Λ ≥ 0 Λ > 0 Umut Varolgunes Relative Floer theory

  24. Dependence on K SH M ( ∅ ) = LH M ( ∅ ; L ) = 0 (good exercise) SH M ( M ) = H ( M , Λ ≥ 0 ) ⊗ Λ ≥ 0 Λ > 0 LH M ( M ; L ) = HF ( L , Λ ≥ 0 ) ⊗ Λ ≥ 0 Λ > 0 Umut Varolgunes Relative Floer theory

  25. Dependence on K SH M ( ∅ ) = LH M ( ∅ ; L ) = 0 (good exercise) SH M ( M ) = H ( M , Λ ≥ 0 ) ⊗ Λ ≥ 0 Λ > 0 LH M ( M ; L ) = HF ( L , Λ ≥ 0 ) ⊗ Λ ≥ 0 Λ > 0 If K × S 1 ⊂ M × T ∗ S 1 is displaceable from itself by a Hamiltonian diffeomorphism, then SH M ( K ) is torsion. Umut Varolgunes Relative Floer theory

  26. Dependence on K SH M ( ∅ ) = LH M ( ∅ ; L ) = 0 (good exercise) SH M ( M ) = H ( M , Λ ≥ 0 ) ⊗ Λ ≥ 0 Λ > 0 LH M ( M ; L ) = HF ( L , Λ ≥ 0 ) ⊗ Λ ≥ 0 Λ > 0 If K × S 1 ⊂ M × T ∗ S 1 is displaceable from itself by a Hamiltonian diffeomorphism, then SH M ( K ) is torsion. If L is displaceable from K by a Hamiltonian diffeomorphism, then LH M ( K ; L ) is torsion. Umut Varolgunes Relative Floer theory

  27. Dependence on K SH M ( ∅ ) = LH M ( ∅ ; L ) = 0 (good exercise) SH M ( M ) = H ( M , Λ ≥ 0 ) ⊗ Λ ≥ 0 Λ > 0 LH M ( M ; L ) = HF ( L , Λ ≥ 0 ) ⊗ Λ ≥ 0 Λ > 0 If K × S 1 ⊂ M × T ∗ S 1 is displaceable from itself by a Hamiltonian diffeomorphism, then SH M ( K ) is torsion. If L is displaceable from K by a Hamiltonian diffeomorphism, then LH M ( K ; L ) is torsion. Invariance under symplectomorphisms (given by relabeling choices) Umut Varolgunes Relative Floer theory

  28. Descent Umut Varolgunes Relative Floer theory

  29. Descent Let F ( K ) denote SC M ( K , H s ) or LC M ( K , H s ; L ). Umut Varolgunes Relative Floer theory

  30. Descent Let F ( K ) denote SC M ( K , H s ) or LC M ( K , H s ; L ). Floer theory naturally constructs maps F ( K 1 ∪ K 2 ) → cone ( F ( K 1 ) ⊕ F ( K 2 ) → F ( K 1 ∩ K 2 )) (2) We say K 1 and K 2 satisfies descent if this map is a quasi-isomorphism (definition independent of choices). Theorem (V.) If K 1 and K 2 admit barriers (a property independent of L) then, K 1 and K 2 satisfy descent. Umut Varolgunes Relative Floer theory

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend