fukaya categories and bordered heegaard floer homology
play

Fukaya categories and bordered Heegaard-Floer homology Denis Auroux - PowerPoint PPT Presentation

Fukaya categories and bordered Heegaard-Floer homology Denis Auroux UC Berkeley / MIT International Congress of Mathematicians 2010 Hyderabad arXiv:1001.4323 (to appear in J. G okova Geom. Topol.) arXiv:1003.2962 (Proc. ICM 2010)


  1. Fukaya categories and bordered Heegaard-Floer homology Denis Auroux UC Berkeley / MIT International Congress of Mathematicians 2010 – Hyderabad arXiv:1001.4323 (to appear in J. G¨ okova Geom. Topol.) arXiv:1003.2962 (Proc. ICM 2010) builds on work of: R. Lipshitz, P. Ozsv´ ath, D. Thurston; T. Perutz, Y. Lekili M. Abouzaid, P. Seidel; S. Ma’u, K. Wehrheim, C. Woodward Denis Auroux (UC Berkeley / MIT) Fukaya categories and Heegaard-Floer ICM 2010 1 / 12

  2. Heegaard-Floer homology Y 3 closed 3-manifold admits a Heegaard H β splitting into two handlebodies Y = H α ∪ Σ H β . This is encoded by a Heegaard diagram (Σ , α 1 . . . α g , β 1 . . . β g ). ( g = genus (Σ)) β 1 β g H α z Σ α 1 α g unordered g -tuples of points on punctured Σ Let T α = α 1 × · · · × α g , T β = β 1 × · · · × β g ⊂ Sym g (Σ \ z ) Theorem ( Ozsv´ ath-Szab´ o, ∼ 2000) � HF ( Y ) := HF ( T β , T α ) is independent of chosen Heegaard diagram. (Floer homology: complex generated by T α ∩ T β = g -tuples of intersections between α and β curves, differential counts holomorphic curves). Denis Auroux (UC Berkeley / MIT) Fukaya categories and Heegaard-Floer ICM 2010 2 / 12

  3. Heegaard-Floer TQFT Extend Heegaard-Floer to surfaces and 3-manifolds with boundary? 2 answers: Lipshitz-Ozsv´ ath-Thurston ’08 (explicit, computable) vs. Lekili-Perutz ’10 (geometric, can be extended to HF ± ) Y 3 closed � � HF ( Y ) abelian group W 4 cobordism ( ∂ W = Y 2 − Y 1 ) � � F W : � HF ( Y 1 ) → � HF ( Y 2 ) Σ surface (punctured, decorated) � category C (Σ) (Γ Σ acts faithfully) (modules over) finite dg-algebra A (Σ) (extended, balanced) Fukaya category F # (Sym g (Σ)) Y 3 with boundary ∂ Y = Σ � object C ( Y ) ∈ C (Σ)? � CFA ( Y ) right A ∞ A (Σ)-module (also: � CFD ( Y ) left dg-module) T Y (generalized) Lagrangian submanifold of Sym g (Σ) cobordism ∂ Y = Σ 2 − Σ 1 � functor C (Σ 1 ) → C (Σ 2 ) from bimodule � CFDA ( Y ), (generalized) Lagr. correspondence T Y HF ( Y 1 ∪ Σ Y 2 ) = hom mod- A ( � � Y 2 ) , � CFA ( − CFA ( Y 1 )) = HF ( T Y 1 , T - Y 2 ) Denis Auroux (UC Berkeley / MIT) Fukaya categories and Heegaard-Floer ICM 2010 3 / 12

  4. Goal: relate these two approaches Plan Background: Floer homology, Fukaya categories, correspondences The Lekili-Perutz approach: correspondences from cobordisms The Lipshitz-Ozsv´ ath-Thurston strands algebra The partially wrapped Fukaya category of Sym k (Σ) Modules and bimodules from bordered 3-manifolds Denis Auroux (UC Berkeley / MIT) Fukaya categories and Heegaard-Floer ICM 2010 4 / 12

  5. Floer homology, Fukaya categories and correspondences Σ Riemann surface, M = Sym k (Σ) monotone symplectic manifold � Fukaya category F ( M ): objects = Lagrangian submanifolds ∗ (closed) hom( L , L ′ ) = CF ( L , L ′ ) = � (monotone, balanced) x ∈ L ∩ L ′ Z 2 x L ′ differential ∂ : CF ( L , L ′ ) → CF ( L , L ′ ) y x coeff. of y in ∂ x counts holom. strips L composition CF ( L , L ′ ) ⊗ CF ( L ′ , L ′′ ) → CF ( L , L ′′ ) y L ′′ L ′ coeff. of z in x · y counts holom. triangles z x more ( A ∞ -category) L (for product Lagrangians, holom. curves in Sym k (Σ) can be seen on Σ) L Lagrangian correspondences M 1 − → M 2 = Lagrangian submanifolds L ⊂ ( M 1 × M 2 , – ω 1 ⊕ ω 2 ) generalize symplectomorphisms. “generalized Lagrangians” = formal images of Lagrangians under sequences of correspondences; Floer theory extends well. � extended Fukaya cat. F # ( M ) (Ma’u-Wehrheim-Woodward). Denis Auroux (UC Berkeley / MIT) Fukaya categories and Heegaard-Floer ICM 2010 5 / 12

  6. Lekili-Perutz: correspondences from cobordisms Σ − = Σ 0 Perutz: Elementary cobordism Y 12 : Σ 1 � Σ 2 = ⇒ Lagrangian correspondence Y 01 T 12 ⊂ Sym k (Σ 1 ) × Sym k +1 (Σ 2 ) ( k ≥ 0) Σ 1 (roughly: k points on Σ 1 �→ “same” k points on Σ 2 Y 12 plus one point anywhere on γ ) Lekili-Perutz: decompose Y 3 into sequence of γ Σ 2 elementary cobordisms Y i , i +1 , compose all T i , i +1 to get a generalized correspondence T Y . . . . Y : Sym k − (Σ − ) → Sym k + (Σ + ) ( ∂ Y =Σ + − Σ − ) T Σ + Theorem (Lekili-Perutz) T Y is independent of decomposition of Y into elementary cobordisms. View Y 3 ( sutured: ∂ Y =Σ + ∪ Σ − ) as cobordism of surfaces w. boundary For a handlebody (as cobordism D 2 � Σ g ), T Y ≃ product torus Y 3 closed, Y \ B 3 : D 2 � D 2 , then T Y ≃ � HF ( Y ) ∈ F # ( pt ) = Vect Denis Auroux (UC Berkeley / MIT) Fukaya categories and Heegaard-Floer ICM 2010 6 / 12

  7. The Lipshitz-Ozsv´ ath-Thurston strands algebra A (Σ , k ) Describe Σ by a pointed matched circle: segment with 4 g points carrying labels 1 , . . . , 2 g , 1 , . . . , 2 g (= how to build Σ = D 2 ∪ 2 g 1-handles) A (Σ , k ) is generated (over Z 2 ) by k -tuples of { upward strands, pairs of horizontal dotted lines } s.t. the k source labels (resp. target labels) in { 1 , . . . , 2 g } are all distinct. Example ( g = k = 2) 4 4 4 4 4 4 4 4 4 4 q q q q q q q q q q 3 3 3 3 3 3 3 3 3 3 q q q q q q q q q q 2 2 2 2 2 2 2 2 2 2 ∂ q q q q q q q q q q �→ �→ 1 1 1 1 1 1 1 1 1 1 q q q q q q q q q q 4 4 4 4 4 4 4 4 4 4 q q q q q q q q q q 3 3 3 3 3 3 3 3 3 3 q q q q q q q q q q 2 2 2 2 2 2 2 2 2 2 q q q q q q q q q q 1 1 1 1 1 1 1 1 1 1 q q q q q q q q q q { 1 , 2 } �→ { 2 , 4 } Differential: sum all ways of smoothing one crossing. Product: concatenation (end points must match). q as q q + q q Treat q and set q = 0. q q q q q q q q q Denis Auroux (UC Berkeley / MIT) Fukaya categories and Heegaard-Floer ICM 2010 7 / 12

  8. The extended Fukaya category vs. A (Σ , k ) Theorem F # (Sym k (Σ)) embeds fully faithfully into mod- A (Σ , k ) (A ∞ -modules) Main tool: partially wrapped Fukaya cat. F # (Sym k (Σ) , z ) ( z ∈ ∂ Σ) Enlarge F # : allow noncompact objects = products of k disjoint properly embedded arcs; Floer theory perturbed by Hamiltonian flow. Roughly: hom( L 0 , L 1 ) := CF (˜ L 0 , ˜ L 1 ), isotoping arcs so that end points of ˜ L 0 lie above those of ˜ L 1 in ∂ Σ \ { z } (without crossing z ) Similarly, product is defined by perturbing so that ˜ L 0 > ˜ L 1 > ˜ L 2 . (after Abouzaid-Seidel) Let D s = � α i ( s ⊆ { 1 ... 2 g } , | s | = k ). Then: z α 2 g i ∈ s 1. � α 1 hom( D s , D t ) ≃ A (Σ , k ) s , t 2. the objects D s generate F # (Sym k (Σ) , z ) Denis Auroux (UC Berkeley / MIT) Fukaya categories and Heegaard-Floer ICM 2010 8 / 12

  9. � hom( D s , D t ) ≃ A (Σ , k ) � � s = � By def. of F # (Sym k (Σ) , z ), hom( D s , D t ) = CF (˜ s , ˜ D − ˜ α ± D + D ± t ) ˜ i i ∈ s z α + α + α − α − ˜ 2 g · · · ˜ ˜ 1 · · · ˜ 1 2 g � α + α − j Dictionary: points of ˜ i ∩ ˜ j ← → strands q generators = k -tuples i q ) q (intersections on central axis ← → q q q y l x l l q q Differential: y appears in ∂ x iff ← → x = and y = k k j i q q j j q q x y i i k q q Similarly for product (triple diagram); all diagrams are “nice” More generally: Z ⊂ ∂ Σ finite, α i ⊂ Σ disjoint arcs s.t. each component of Σ \ � α i contains ≥ 1 point of Z . Let D s = � i ∈ s α i ∈ F # (Sym k Σ , Z ). Then � hom( D s , D t ) is a combinatorially explicit, LOT-type, dg-algebra. Denis Auroux (UC Berkeley / MIT) Fukaya categories and Heegaard-Floer ICM 2010 9 / 12

  10. { D s = � i ∈ s α i } s ⊆{ 1 ... 2 g } generate F # (Sym k (Σ) , z ) 2:1 → C induces a Lefschetz fibration f k : Sym k (Σ) → C with π : Σ − � 2 g +1 � critical points. Its thimbles = products of α i (1 ≤ i ≤ 2 g + 1) k generate F ( f k ) ≃ F (Sym k Σ , { z , z ′ } ) (Seidel) z α 2 g +1 α 2 g α 1 z ′ � 2 g +1 � objects also generate F # (Sym k Σ , z ). These k Uses: acceleration functor F (Sym k Σ , { z , z ′ } ) → F (Sym k Σ , z ) (Abouzaid-Seidel) α i 1 × · · · × α 2 g +1 ≃ twisted complex built from { α i 1 × · · · × α j } 2 g j =1 Uses: arc slides are mapping cones More generally: Z ⊂ ∂ Σ finite, α i ⊂ Σ disjoint arcs s.t. each component of Σ \ � α i is a disc containing ≤ 1 point of Z . Then the products D s = � i ∈ s α i generate F # (Sym k Σ , Z ). Denis Auroux (UC Berkeley / MIT) Fukaya categories and Heegaard-Floer ICM 2010 10 / 12

  11. Yoneda embedding and A ∞ -modules Recall: Y 3 , ∂ Y = Σ ∪ D 2 ⇒ gen. Lagr. T Y ∈ F # (Sym g Σ) (Lekili-Perutz) Yoneda embedding: T Y �→ Y ( T Y ) = � s hom( T Y , D s ) right A ∞ -module over � s , t hom( D s , D t ) ≃ A (Σ , g ). In fact, Y ( T Y ) ≃ � CFA ( Y ) (bordered Heegaard-Floer module) Pairing theorem: if Y = Y 1 ∪ Y 2 , ∂ Y 1 = − ∂ Y 2 = Σ ∪ D 2 , then � CF ( Y ) ≃ hom F # ( T Y 1 , T − Y 2 ) ≃ hom mod- A ( Y ( T − Y 2 ) , Y ( T Y 1 )) . also: (using A ( − Σ , g ) ≃ A (Σ , g ) op ) � CF ( Y ) ≃ T Y 1 ◦ T Y 2 ≃ Y ( T Y 1 ) ⊗ A Y ( T Y 2 ). More generally, if ∂ Y = Σ + ∪ − Σ − (sutured manifold), the generalized corresp. T Y ∈ F # ( − Sym k − Σ − × Sym k + Σ + ) yields an A ∞ -bimodule Y ( T Y ) = � s , t hom( D − , s , T Y , D + , t ) ∈ A (Σ − , k − )-mod- A (Σ + , k + ) (cf. Ma’u-Wehrheim-Woodward). Y ( T Y ) ≃ � CFDA ( Y )? (same properties) Denis Auroux (UC Berkeley / MIT) Fukaya categories and Heegaard-Floer ICM 2010 11 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend