fukaya categories of symmetric products and bordered
play

Fukaya categories of symmetric products and bordered Heegaard-Floer - PowerPoint PPT Presentation

Fukaya categories of symmetric products and bordered Heegaard-Floer homology Denis AUROUX Massachusetts Institute of Technology (work in progress) Ozsv ath-Szab o invariants as a TQFT? ( X ) Z closed 4-manifold X = ( HF


  1. Fukaya categories of symmetric products and bordered Heegaard-Floer homology Denis AUROUX Massachusetts Institute of Technology (work in progress)

  2. Ozsv´ ath-Szab´ o invariants as a TQFT? ⇒ Φ( X ) ∈ Z • closed 4-manifold X = ( � HF , HF + , HF − ) • closed 3-manifold Y = ⇒ HF ( Y ) abelian group • cobordism ∂X = Y 2 − Y 1 = ⇒ Φ( X ) : HF ( Y 1 ) → HF ( Y 2 ) ————————— • surface Σ = ⇒ category C (Σ)? • 3-manifold with boundary ∂Y = Σ = ⇒ object C ( Y ) ∈ C (Σ)? (e.g.: handlebody) • cobordism ∂Y = Σ 2 − Σ 1 = ⇒ functor C ( Y ) : C (Σ 1 ) → C (Σ 2 )? • pairing: Y = Y 1 ∪ Σ Y 2 = ⇒ HF ( Y ) ≃ hom C (Σ) ( C ( Y 1 ) , C ( Y 2 ))? see also: Perutz, Lekili 1

  3. Bordered Heegaard-Floer homology (R. Lipshitz–P. Ozsv´ ath–D. Thurston) • F (marked, parameterized) surface = ⇒ A ( F ) differential algebra ⇒ � ∼ • Y 3-manifold with ∂Y → F = CFA ( Y ) right A ∞ -module over A ( F ) • Y ′ 3-manifold with ∂Y ′ ∼ ⇒ � CFD ( Y ′ ) left dg-module over A ( F ) → − F = • cobordisms = ⇒ bimodules over A ( F ) CF ( Y ∪ F Y ′ ) ≃ � � • Pairing theorem: � CFD ( Y ′ ) CFA ( Y ) ⊗ A ( F ) Lipshitz-Ozsv´ ath-Thurston define A ( F ) combinatorially, to encode behavior of holomorphic strips upon neck-stretching (SFT). Goal: Symplectic interpretation of A ( F ) and � CFA ( Y ) in terms of Fukaya categories of Sym k ( F ) . 2

  4. The algebra A ( F, k ) (Lipshitz-Ozsv´ ath-Thurston) Describe F (genus g ) by a pointed matched circle: 4 g points 1 , . . . , 4 g carrying labels 1 , . . . , 2 g, 1 , . . . , 2 g A ( F, k ) (1 ≤ k ≤ 2 g ) generated by k -tuples of either � i � • upwards stands (“Reeb chords”) connecting pairs of points ( i < j ) j � i � • pairs of horizontal dotted lines such that the k source labels (resp. target labels) in { 1 , . . . , 2 g } are all distinct. View A ( F, k ) as a finite (differential) category with objects S k = k -element subsets of { 1 , . . . , 2 g } . (4) Example ( g = 2, k = 2): 8 8 r r (3) 7 7 r r (2) 6 6 r r (1) [ 5 2 5 5 morphism { 1 , 2 } → { 2 , 4 } . 8 ] = r r (4) 4 4 r r (3) 3 3 r r (2) 2 2 r r (1) 1 1 r r 3

  5. The algebra A ( F, k ) (continued) Differential: sum all ways of smoothing one crossing (double-crossing ∼ 0). (4) (4) 8 8 8 8 8 8 8 8 8 8 8 8 r r r r r r r r r r r r (3) (3) 7 7 7 7 7 7 7 7 7 7 7 7 r r r r r r r r r r r r (2) (2) 6 6 6 6 6 6 6 6 6 6 6 6 r r r r r r r r r r r r ∂ ∂ �→ �→ (1) (1) 5 5 5 5 5 5 5 5 5 5 5 5 r r r r r r r r + r r + r r (4) (4) 4 4 4 4 4 4 4 4 4 4 4 4 r r r r r r r r r r r r (3) (3) 3 3 3 3 3 3 3 3 3 3 3 3 r r r r r r r r r r r r (2) (2) 2 2 2 2 2 2 2 2 2 2 2 2 r r r r r r r r r r r r (1) (1) 1 1 1 1 1 1 1 1 1 1 1 1 r r r r r r r r r r r r [ 5 2 [ 5 6 [ 1 2 3 [ 1 2 3 [ 1 2 3 8 ] 6 8 ] 7 5 4 ] 7 4 5 ] 5 7 4 ] 0 Product: concatenation (double-crossing ∼ 0) (4) (4) 8 8 8 8 8 8 8 8 8 8 r r r r r r r r r r (3) (3) 7 7 7 7 7 7 7 7 7 7 r r r r r r r r r r (2) (2) 6 6 6 6 6 6 6 6 6 6 r r r r r r r r r r �→ �→ 0 (1) (1) 5 5 5 5 5 5 5 5 5 5 r r r r r r r r r r (4) (4) 4 4 4 4 4 4 4 4 4 4 r r r r r r r r r r (3) (3) 3 3 3 3 3 3 3 3 3 3 r r r r r r r r r r (2) (2) 2 2 2 2 2 2 2 2 2 2 r r r r r r r r r r (1) (1) 1 1 1 1 1 1 1 1 1 1 r r r r r r r r r r [ 2 5 [ 5 2 [ 2 5 [ 2 1 [ 5 2 5 6 ] 8 ] 8 6 ] 6 ] 8 ] 4

  6. A ( F, k ) vs. the Fukaya category of Sym k ( F ) z α 2 g α 1 Definition. For s ∈ S k , let D s = � α i ⊂ Sym k ( F ) . i ∈ s Let F ′ = relative Fukaya category of (Sym k ( F ) , { z } × Sym k − 1 ( F )). ( “partially wrapped” ) � Theorem 1. A ( F, k ) ≃ hom F ′ ( D s , D s ′ ) . s,s ′ ∈S k 5

  7. Fukaya categories L, L ′ ⊂ ( M, ω ) compact exact Lagr. ⇒ hom( L, L ′ ) = CF ( L, L ′ ) = Z | L ∩ L ′ | 2 • Differential ∂ : hom( L 0 , L 1 ) → hom( L 0 , L 1 ) L 1 � ∂ ( p ) , q � counts pseudo-holomorphic strips q p L 0 • Product m 2 : hom( L 0 , L 1 ) ⊗ hom( L 1 , L 2 ) → hom( L 0 , L 2 ) q L 2 L 1 � m 2 ( p, q ) , r � counts pseudo-holomorphic triangles r p L 0 • Higher products m k ( A ∞ category) Partially wrapped case: (in progress, cf. also Abouzaid, Seidel) • ∂M contact, N ⊂ ∂M , ρ : ∂M → [0 , 1], ρ − 1 (0) = N • H ρ Hamiltonian on ˆ M = M ∪ [1 , ∞ ) × ∂M , s.t. H ρ ( r, y ) = ρ ( y ) r near ∞ H ρ “wraps” along Reeb flow of contact hypersurface { r = ρ − 1 } ≃ ∂M \ N , slowing down as one approaches N ⇒ perturb Floer homology by long-time flow of H ρ : for ∂L, ∂L ′ ⊂ ∂M \ N , hom F ′ ( L, L ′ ) = w → + ∞ CF ( φ wH ρ ( L ) , L ′ ) . lim 6

  8. Partial wrapping in Sym k ( F ) Partial wrapping of D s = � ≃ � Ham α i rel. { z } × Sym k − 1 ( F ) gives D − α − ˜ i . s i ∈ s i ∈ s z z α 2 g α 1 α − α − α + α + ˜ 2 g · · · ˜ ˜ 1 · · · ˜ 1 2 g 7

  9. s ≃ � α ± Floer theory for D ± i ∈ s ˜ i α − α − α − α − ˜ 2 g · · · ˜ ˜ 2 g · · · ˜ α 2 g 1 1 α 1 z α 2 g α 1 α + ˜ q 2 g 2 g α + ˜ q 1 1 α + ˜ α − α − α + α + q 2 g 2 g ˜ 2 g · · · ˜ ˜ 1 · · · ˜ 1 2 g α + ˜ q 1 1 Proof of Theorem 1: s ′ ) ∼ s , D + • CF ( D − = hom A ( F,k ) ( s, s ′ ) (gen. by k -tuples of intersections) • ∂ counts empty rectangles (“nice diagram”) • product m 2 counts unions of triangles (head-to-tail overlap only) • m k ≥ 3 ≡ 0 8

  10. Generating the relative Fukaya category � 2 g � “Theorem” 2. The relative Fukaya category F ′ is generated by the k objects D s , s ⊆ { 1 , . . . , 2 g } , | s | = k . Hence, F ′ -mod ≃ A ( F, k ) -mod. Key: D s are “thimbles” for a Lefschetz fibration f k : Sym k ( F ) → C . 2:1 → C (with 2 g + 1 branch points). • Start with π : F − � 2 g +1 � Then f k : { z 1 , . . . , z k } �→ � π ( z i ) has nondegenerate critical points k = tuples of distinct critical points of π . • The thimbles (stable manifolds for ∇ Re ( f k )) are products of k arcs on F ( α 1 , . . . , α 2 g + one other = thimbles of π ); they generate F ′ [Seidel]. � 2 g � • Can reduce to sub-fibration f − 1 k ( U ), U ⊂ C , with thimbles = { D s } s ∈S k . k 9

  11. The A ∞ -module � CFA ( Y ) β 1 β 2 β 3 z α a 2 g y x, y x, y x α a 1 α c 1 Σ, genus ¯ g ≥ g α a 1 , . . . , α a 2 g ; α c 1 , . . . , α c ¯ g − g β 1 , . . . , β ¯ g e.g., x · [ 6 4 7 ] = y . 10

  12. The A ∞ -module � CFA ( Y ) β 1 β 2 β 3 z α a 2 g y x, y x, y x α a 1 α c 1 Σ, genus ¯ g ≥ g α a 1 , . . . , α a 2 g ; α c 1 , . . . , α c ¯ g − g β 1 , . . . , β ¯ g CFA ( Y ) ≃ � � CF ( T β , T c “Theorem” 3. α × D s ) (right A ( F, g ) -module). s ∈S g Note: A ( F, g ) and F (Sym g F, z × Sym g − 1 F ) embed into F (Sym ¯ g Σ , z × Sym ¯ g − 1 Σ) via T c α 11

  13. The pairing theorem CF ( Y ∪ F Y ′ ) ≃ hom A ( F,g ) − mod ( � CFA ( − Y ′ ) , � “Theorem” 4. � CFA ( Y )) . (Equivalent to Lipshitz-Ozsv´ ath-Thurston’s pairing result) Main ingredients: • Extended Fukaya categories (“quilts”) [Wehrheim-Woodward]: α as generalized Lagrangian in (Sym g ( F ) , z × Sym g − 1 ( F )) view T β ◦ T c • Yoneda embedding (+ Theorem 2): hom A− mod ( T β ′ ◦ T c α ′ , T β ◦ T c α ) ≃ CF ( T β ◦ T c α , T β ′ ◦ T c α ′ ) • “ CF ( T β × T c α ′ , T β ′ × T c α ) ≃ CF ( T β ◦ T c α , T β ′ ◦ T c α ′ )” [Lekili-Perutz] 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend