on massey products and triangulated categories
play

On Massey products and triangulated categories Fernando Muro - PowerPoint PPT Presentation

On Massey products and triangulated categories Fernando Muro Universitat de Barcelona Dept. lgebra i Geometria Homotopy Theory and Higher Categories 20072008 Workshop on Derived Categories Fernando Muro On Massey products and


  1. Massey products � � � � Idea of the proof. 0 � � � � � � � g f h � Y � U X Z a � Y � C exact X Σ X q f i q f i A triangle X → Σ X is exact if and only if − → Y − → C − (Σ f ) ∗ f ∗ i ∗ q ∗ T ( − , X ) − → T ( − , Y ) − → T ( − , C ) − → T ( − , Σ X ) − → T ( − , Σ Y ) is an exact sequence of T -modules and 1 Σ X ∈ � q , i , f � . Fernando Muro On Massey products and triangulated categories

  2. Massey products � � � � � Idea of the proof. 0 � � � � � � � g f h � Y � U X Z a b � Y � C exact X Σ X q f i q f i A triangle X → Σ X is exact if and only if − → Y − → C − (Σ f ) ∗ f ∗ i ∗ q ∗ T ( − , X ) − → T ( − , Y ) − → T ( − , C ) − → T ( − , Σ X ) − → T ( − , Σ Y ) is an exact sequence of T -modules and 1 Σ X ∈ � q , i , f � . Fernando Muro On Massey products and triangulated categories

  3. Massey products � � � Idea of the proof. g f h � Y � Z � U X a b ∈ � h , g , f � � Y � C exact X Σ X q f i q f i A triangle X → Σ X is exact if and only if − → Y − → C − (Σ f ) ∗ f ∗ i ∗ q ∗ T ( − , X ) − → T ( − , Y ) − → T ( − , C ) − → T ( − , Σ X ) − → T ( − , Σ Y ) is an exact sequence of T -modules and 1 Σ X ∈ � q , i , f � . Fernando Muro On Massey products and triangulated categories

  4. Massey products � � � Idea of the proof. g f h � Y � Z � U X a b ∈ � h , g , f � � Y � C exact X Σ X q f i q f i A triangle X → Σ X is exact if and only if − → Y − → C − (Σ f ) ∗ f ∗ i ∗ q ∗ T ( − , X ) − → T ( − , Y ) − → T ( − , C ) − → T ( − , Σ X ) − → T ( − , Σ Y ) is an exact sequence of T -modules and 1 Σ X ∈ � q , i , f � . Fernando Muro On Massey products and triangulated categories

  5. Heller’s theory When is a Massey product induced by a triangulated structure? Let mod - T be the stable category of coherent T -modules, Hom T ( M , N ) Hom T ( M , N ) = { M → T ( − , X ) → N } . The stable category is triangulated. The translation functor S : mod - T − → mod - T is determined by the choice of short exact sequences in mod - T , 0 → M − → SM → 0 . → T ( − , CM ) − Fernando Muro On Massey products and triangulated categories

  6. Heller’s theory When is a Massey product induced by a triangulated structure? Let mod - T be the stable category of coherent T -modules, Hom T ( M , N ) Hom T ( M , N ) = { M → T ( − , X ) → N } . The stable category is triangulated. The translation functor S : mod - T − → mod - T is determined by the choice of short exact sequences in mod - T , 0 → M − → SM → 0 . → T ( − , CM ) − Fernando Muro On Massey products and triangulated categories

  7. Heller’s theory When is a Massey product induced by a triangulated structure? Let mod - T be the stable category of coherent T -modules, Hom T ( M , N ) Hom T ( M , N ) = { M → T ( − , X ) → N } . The stable category is triangulated. The translation functor S : mod - T − → mod - T is determined by the choice of short exact sequences in mod - T , 0 → M − → SM → 0 . → T ( − , CM ) − Fernando Muro On Massey products and triangulated categories

  8. Heller’s theory � �� � � �� � The functor Σ extends in an essentially unique way, Σ T T ∼ Yoneda Yoneda Σ mod - T mod - T exact ∼ � mod - T Σ triangle mod - T ∼ Fernando Muro On Massey products and triangulated categories

  9. Heller’s theory � � � Theorem (Heller’68) There is a bijective correspondence between Puppe triangulated structures on ( T , Σ) and natural isomorphisms δ : Σ ∼ = S 3 such that for any coherent T -module M, δ SM S 4 M Σ SM � � � � � − 1 � � � � � � ∼ � � = S δ M � � � � � S Σ M Theorem There is an isomorphism which sends the Massey product of a triangulation on ( T , Σ) to Heller’s natural isomorphism, Hom (Σ , S 3 ) . ∼ MP ( T , Σ) = skip proof Fernando Muro On Massey products and triangulated categories

  10. Heller’s theory � � � Theorem (Heller’68) There is a bijective correspondence between Puppe triangulated structures on ( T , Σ) and natural isomorphisms δ : Σ ∼ = S 3 such that for any coherent T -module M, δ SM S 4 M Σ SM � � � � � − 1 � � � � � � ∼ � � = S δ M � � � � � S Σ M Theorem There is an isomorphism which sends the Massey product of a triangulation on ( T , Σ) to Heller’s natural isomorphism, Hom (Σ , S 3 ) . ∼ MP ( T , Σ) = skip proof Fernando Muro On Massey products and triangulated categories

  11. Heller’s theory �� � �� � �� � �� � � Idea of the proof. Let �− , − , −� be a Massey product. We need to define a morphism δ M : Σ M → S 3 M for any coherent T -module M . g � f h � T ( − , CS 2 M ) T ( − , CS 3 M ) T ( − , CM ) T ( − , CSM ) � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � S 2 M S 3 M M SM Fernando Muro On Massey products and triangulated categories

  12. Heller’s theory �� � �� � �� � �� � � Idea of the proof. Let �− , − , −� be a Massey product. We need to define a morphism δ M : Σ M → S 3 M for any coherent T -module M . g � f h � T ( − , CS 2 M ) T ( − , CS 3 M ) T ( − , CM ) T ( − , CSM ) � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � S 2 M S 3 M M SM Fernando Muro On Massey products and triangulated categories

  13. Heller’s theory �� � �� � �� � �� � � Idea of the proof. Let �− , − , −� be a Massey product. We need to define a morphism δ M : Σ M → S 3 M for any coherent T -module M . g � f h � T ( − , CS 2 M ) T ( − , CS 3 M ) T ( − , CM ) T ( − , CSM ) � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � S 2 M S 3 M M SM Fernando Muro On Massey products and triangulated categories

  14. Heller’s theory � � �� �� � � �� �� � Idea of the proof. Let �− , − , −� be a Massey product. We need to define a morphism δ M : Σ M → S 3 M for any coherent T -module M . g � f h � T ( − , CS 2 M ) T ( − , CS 3 M ) T ( − , CM ) T ( − , CSM ) � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � h , g , f � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � S 2 M S 3 M T ( − , Σ CM ) M SM Fernando Muro On Massey products and triangulated categories

  15. Heller’s theory �� � �� � �� � �� � � �� � Idea of the proof. Let �− , − , −� be a Massey product. We need to define a morphism δ M : Σ M → S 3 M for any coherent T -module M . g � f h � T ( − , CS 2 M ) T ( − , CS 3 M ) T ( − , CM ) T ( − , CSM ) � � � � � � � � � � � � � � � � � � � � � � � � � � � h , g , f � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � S 2 M S 3 M T ( − , Σ CM ) M SM � � � � � � � Σ M Fernando Muro On Massey products and triangulated categories

  16. Heller’s theory � � �� �� � �� �� � �� � � Idea of the proof. Let �− , − , −� be a Massey product. We need to define a morphism δ M : Σ M → S 3 M for any coherent T -module M . g � f h � T ( − , CS 2 M ) T ( − , CS 3 M ) T ( − , CM ) T ( − , CSM ) � � � � � � � � � � � � � � � � � � � � � � � � � � � h , g , f � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � S 2 M S 3 M T ( − , Σ CM ) M SM � � � � � � � � � � � � δ M � � � Σ M Fernando Muro On Massey products and triangulated categories

  17. An example of Heller’s theory Let T = F ( Z / 4 ) be the category of finitely generated free Z / 4-modules and Σ = 1 F ( Z / 4 ) the identity functor. In this case mod - T = mod - Z / 4, mod - T = F ( Z / 2 ) and S = 1 F ( Z / 2 ) . ∼ ∼ MP ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) Hom ( 1 F ( Z / 2 ) , 1 F ( Z / 2 ) ) Z / 2 . = = Theorem (M.-Schwede-Strickland’07) The non-trivial Massey product in ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) is induced by a Verdier triangulated structure where the triangle 2 2 2 Z / 4 → Z / 4 → Z / 4 → Z / 4 − − − is exact. Fernando Muro On Massey products and triangulated categories

  18. An example of Heller’s theory Let T = F ( Z / 4 ) be the category of finitely generated free Z / 4-modules and Σ = 1 F ( Z / 4 ) the identity functor. In this case mod - T = mod - Z / 4, mod - T = F ( Z / 2 ) and S = 1 F ( Z / 2 ) . ∼ ∼ MP ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) Hom ( 1 F ( Z / 2 ) , 1 F ( Z / 2 ) ) Z / 2 . = = Theorem (M.-Schwede-Strickland’07) The non-trivial Massey product in ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) is induced by a Verdier triangulated structure where the triangle 2 2 2 Z / 4 → Z / 4 → Z / 4 → Z / 4 − − − is exact. Fernando Muro On Massey products and triangulated categories

  19. An example of Heller’s theory Let T = F ( Z / 4 ) be the category of finitely generated free Z / 4-modules and Σ = 1 F ( Z / 4 ) the identity functor. In this case mod - T = mod - Z / 4, mod - T = F ( Z / 2 ) and S = 1 F ( Z / 2 ) . ∼ ∼ MP ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) Hom ( 1 F ( Z / 2 ) , 1 F ( Z / 2 ) ) Z / 2 . = = Theorem (M.-Schwede-Strickland’07) The non-trivial Massey product in ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) is induced by a Verdier triangulated structure where the triangle 2 2 2 Z / 4 → Z / 4 → Z / 4 → Z / 4 − − − is exact. Fernando Muro On Massey products and triangulated categories

  20. An example of Heller’s theory Let T = F ( Z / 4 ) be the category of finitely generated free Z / 4-modules and Σ = 1 F ( Z / 4 ) the identity functor. In this case mod - T = mod - Z / 4, mod - T = F ( Z / 2 ) and S = 1 F ( Z / 2 ) . ∼ ∼ MP ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) Hom ( 1 F ( Z / 2 ) , 1 F ( Z / 2 ) ) Z / 2 . = = Theorem (M.-Schwede-Strickland’07) The non-trivial Massey product in ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) is induced by a Verdier triangulated structure where the triangle 2 2 2 Z / 4 → Z / 4 → Z / 4 → Z / 4 − − − is exact. Fernando Muro On Massey products and triangulated categories

  21. Hochschild-Mitchell cohomology A T -bimodule is a T ⊗ T op -module. The bar complex C ∗ ( T ) is the complex of T -bimodules � C ∗ ( T ) = T ( X 0 , − ) ⊗ · · · ⊗ T ( X i , X i − 1 ) ⊗ · · · ⊗ T ( − , X n ) , X 0 ,..., X n with differential n � ( − 1 ) i α 0 ⊗ · · · ⊗ ( α i α i + 1 ) ⊗ · · · ⊗ α n + 1 . ∂ ( α 0 ⊗ · · · ⊗ α n + 1 ) = i = 0 The Hochschild-Mitchell cohomology of T with coefficients in M , HH ∗ ( T , M ) , is the cohomology of C ∗ ( T , M ) Hom T - bimod ( C ∗ ( T ) , M ) . = Fernando Muro On Massey products and triangulated categories

  22. Hochschild-Mitchell cohomology A T -bimodule is a T ⊗ T op -module. The bar complex C ∗ ( T ) is the complex of T -bimodules � C ∗ ( T ) = T ( X 0 , − ) ⊗ · · · ⊗ T ( X i , X i − 1 ) ⊗ · · · ⊗ T ( − , X n ) , X 0 ,..., X n with differential n � ( − 1 ) i α 0 ⊗ · · · ⊗ ( α i α i + 1 ) ⊗ · · · ⊗ α n + 1 . ∂ ( α 0 ⊗ · · · ⊗ α n + 1 ) = i = 0 The Hochschild-Mitchell cohomology of T with coefficients in M , HH ∗ ( T , M ) , is the cohomology of C ∗ ( T , M ) Hom T - bimod ( C ∗ ( T ) , M ) . = Fernando Muro On Massey products and triangulated categories

  23. Hochschild-Mitchell cohomology A T -bimodule is a T ⊗ T op -module. The bar complex C ∗ ( T ) is the complex of T -bimodules � C ∗ ( T ) = T ( X 0 , − ) ⊗ · · · ⊗ T ( X i , X i − 1 ) ⊗ · · · ⊗ T ( − , X n ) , X 0 ,..., X n with differential n � ( − 1 ) i α 0 ⊗ · · · ⊗ ( α i α i + 1 ) ⊗ · · · ⊗ α n + 1 . ∂ ( α 0 ⊗ · · · ⊗ α n + 1 ) = i = 0 The Hochschild-Mitchell cohomology of T with coefficients in M , HH ∗ ( T , M ) , is the cohomology of C ∗ ( T , M ) Hom T - bimod ( C ∗ ( T ) , M ) . = Fernando Muro On Massey products and triangulated categories

  24. Hochschild-Mitchell cohomology Example T = T ( − , − ) is a T -bimodule, and we denote HH ∗ ( T ) HH ∗ ( T , T ) . = More generally, for any q ∈ Z we consider HH p , q ( T ) HH p ( T , T ( − , Σ q )) HH p ( T , T (Σ − q , − )) . = = We also consider the ( mod - T ) -bimodules Ext q , r Ext q ∼ Ext q T ( − , Σ r ) T (Σ − r , − ) , q ≥ 0 , r ∈ Z , = = T and the cohomology HH p ( mod - T , Ext q , r T ) . Fernando Muro On Massey products and triangulated categories

  25. Hochschild-Mitchell cohomology Example T = T ( − , − ) is a T -bimodule, and we denote HH ∗ ( T ) HH ∗ ( T , T ) . = More generally, for any q ∈ Z we consider HH p , q ( T ) HH p ( T , T ( − , Σ q )) HH p ( T , T (Σ − q , − )) . = = We also consider the ( mod - T ) -bimodules Ext q , r Ext q ∼ Ext q T ( − , Σ r ) T (Σ − r , − ) , q ≥ 0 , r ∈ Z , = = T and the cohomology HH p ( mod - T , Ext q , r T ) . Fernando Muro On Massey products and triangulated categories

  26. Hochschild-Mitchell cohomology Example T = T ( − , − ) is a T -bimodule, and we denote HH ∗ ( T ) HH ∗ ( T , T ) . = More generally, for any q ∈ Z we consider HH p , q ( T ) HH p ( T , T ( − , Σ q )) HH p ( T , T (Σ − q , − )) . = = We also consider the ( mod - T ) -bimodules Ext q , r Ext q ∼ Ext q T ( − , Σ r ) T (Σ − r , − ) , q ≥ 0 , r ∈ Z , = = T and the cohomology HH p ( mod - T , Ext q , r T ) . Fernando Muro On Massey products and triangulated categories

  27. Baues-Wirsching cohomology The Baues-Wirsching cohomology of T with coefficients in M , H ∗ ( T , M ) , is the cohomology of the ‘group ring’ k -category k [ T ] obtained by taking free k -modules on morphism pointed sets, free k -module on T ( X , Y ) . k [ T ]( X , Y ) = The natural k -linear functor k [ T ] → T induces a homomorphism HH ∗ ( T , M ) − → H ∗ ( T , M ) . Example We consider H p , q ( T ) = H p ( T , T (Σ − q , − )) and H p ( mod - T , Ext q , r T ) . Fernando Muro On Massey products and triangulated categories

  28. Baues-Wirsching cohomology The Baues-Wirsching cohomology of T with coefficients in M , H ∗ ( T , M ) , is the cohomology of the ‘group ring’ k -category k [ T ] obtained by taking free k -modules on morphism pointed sets, free k -module on T ( X , Y ) . k [ T ]( X , Y ) = The natural k -linear functor k [ T ] → T induces a homomorphism HH ∗ ( T , M ) − → H ∗ ( T , M ) . Example We consider H p , q ( T ) = H p ( T , T (Σ − q , − )) and H p ( mod - T , Ext q , r T ) . Fernando Muro On Massey products and triangulated categories

  29. Baues-Wirsching cohomology The Baues-Wirsching cohomology of T with coefficients in M , H ∗ ( T , M ) , is the cohomology of the ‘group ring’ k -category k [ T ] obtained by taking free k -modules on morphism pointed sets, free k -module on T ( X , Y ) . k [ T ]( X , Y ) = The natural k -linear functor k [ T ] → T induces a homomorphism HH ∗ ( T , M ) − → H ∗ ( T , M ) . Example We consider H p , q ( T ) = H p ( T , T (Σ − q , − )) and H p ( mod - T , Ext q , r T ) . Fernando Muro On Massey products and triangulated categories

  30. Massey products and H 3 A Baues-Wirsching ( 3 , − 1 ) -cocycle z 3 , − 1 of T sends any three composable morphisms f g h X − → Y − → Z − → U to an element z 3 , − 1 ( h , g , f ) ∈ T (Σ X , U ) , in such a way that i · z 3 , − 1 ( h , g , f ) − z 3 , − 1 ( i · h , g , f ) + z 3 , − 1 ( i , h · g , f ) 0 . − z 3 , − 1 ( i , h , g · f ) + z 3 , − 1 ( i , h , g ) · (Σ f ) = It is a Hochschild-Mitchell cocycle if z 3 , − 1 is k -multilinear. Fernando Muro On Massey products and triangulated categories

  31. Massey products and H 3 A Baues-Wirsching ( 3 , − 1 ) -cocycle z 3 , − 1 of T sends any three composable morphisms f g h X − → Y − → Z − → U to an element z 3 , − 1 ( h , g , f ) ∈ T (Σ X , U ) , in such a way that i · z 3 , − 1 ( h , g , f ) − z 3 , − 1 ( i · h , g , f ) + z 3 , − 1 ( i , h · g , f ) 0 . − z 3 , − 1 ( i , h , g · f ) + z 3 , − 1 ( i , h , g ) · (Σ f ) = It is a Hochschild-Mitchell cocycle if z 3 , − 1 is k -multilinear. Fernando Muro On Massey products and triangulated categories

  32. Massey products and H 3 Lemma Given a Baues-Wirsching ( 3 , − 1 ) -cocycle z 3 , − 1 there is defined a unique Massey product in ( T , Σ) such that z 3 , − 1 ( h , g , f ) ∈ � h , g , f � ⊂ T (Σ X , U ) . This defines a homomorphism HH 3 , − 1 ( T ) − → H 3 , − 1 ( T ) − → MP ( T , Σ) . Fernando Muro On Massey products and triangulated categories

  33. Massey products and H 3 Lemma Given a Baues-Wirsching ( 3 , − 1 ) -cocycle z 3 , − 1 there is defined a unique Massey product in ( T , Σ) such that z 3 , − 1 ( h , g , f ) ∈ � h , g , f � ⊂ T (Σ X , U ) . This defines a homomorphism HH 3 , − 1 ( T ) − → H 3 , − 1 ( T ) − → MP ( T , Σ) . Fernando Muro On Massey products and triangulated categories

  34. Massey products and H 3 Theorem (Pirashvili’88, Baues-Dreckmann’89) The Massey product of a topological triangulated category is in the image of H 3 , − 1 ( T ) − → MP ( T , Σ) . The Massey product of a locally projective algebraic triangulated category is in the image of HH 3 , − 1 ( T ) − → MP ( T , Σ) . skip proof Is there any triangulated category whose Massey product does not come from HH 3 , − 1 or H 3 , − 1 ? Fernando Muro On Massey products and triangulated categories

  35. Massey products and H 3 Theorem (Pirashvili’88, Baues-Dreckmann’89) The Massey product of a topological triangulated category is in the image of H 3 , − 1 ( T ) − → MP ( T , Σ) . The Massey product of a locally projective algebraic triangulated category is in the image of HH 3 , − 1 ( T ) − → MP ( T , Σ) . skip proof Is there any triangulated category whose Massey product does not come from HH 3 , − 1 or H 3 , − 1 ? Fernando Muro On Massey products and triangulated categories

  36. Massey products and H 3 Theorem (Pirashvili’88, Baues-Dreckmann’89) The Massey product of a topological triangulated category is in the image of H 3 , − 1 ( T ) − → MP ( T , Σ) . The Massey product of a locally projective algebraic triangulated category is in the image of HH 3 , − 1 ( T ) − → MP ( T , Σ) . skip proof Is there any triangulated category whose Massey product does not come from HH 3 , − 1 or H 3 , − 1 ? Fernando Muro On Massey products and triangulated categories

  37. Massey products and H 3 � Idea of the proof. Let M be a topological or algebraic model of T such that T ⊂ D ( M ) as a full triangulated subcategory. There is defined a derived 2-category D 2 ( M ) , and a projection � � D ( M ) ⊃ T . D 2 ( M ) � � � � � � � The obstruction to the existence of a splitting pseudofunctor is � D 2 ( M ) � | T ∈ H 3 , − 1 ( T ) universal Massey product and maps to the Massey product of T by H 3 , − 1 ( T ) − → MP ( T , Σ) . Fernando Muro On Massey products and triangulated categories

  38. Massey products and H 3 � Idea of the proof. Let M be a topological or algebraic model of T such that T ⊂ D ( M ) as a full triangulated subcategory. There is defined a derived 2-category D 2 ( M ) , and a projection � � D ( M ) ⊃ T . D 2 ( M ) � � � � � � � The obstruction to the existence of a splitting pseudofunctor is � D 2 ( M ) � | T ∈ H 3 , − 1 ( T ) universal Massey product and maps to the Massey product of T by H 3 , − 1 ( T ) − → MP ( T , Σ) . Fernando Muro On Massey products and triangulated categories

  39. Massey products and H 3 � Idea of the proof. Let M be a topological or algebraic model of T such that T ⊂ D ( M ) as a full triangulated subcategory. There is defined a derived 2-category D 2 ( M ) , and a projection � � D ( M ) ⊃ T . D 2 ( M ) � � � � � � � The obstruction to the existence of a splitting pseudofunctor is � D 2 ( M ) � | T ∈ H 3 , − 1 ( T ) universal Massey product and maps to the Massey product of T by H 3 , − 1 ( T ) − → MP ( T , Σ) . Fernando Muro On Massey products and triangulated categories

  40. Massey products and H 3 � Idea of the proof. Let M be a topological or algebraic model of T such that T ⊂ D ( M ) as a full triangulated subcategory. There is defined a derived 2-category D 2 ( M ) , and a projection � � D ( M ) ⊃ T . D 2 ( M ) � � � � � � � The obstruction to the existence of a splitting pseudofunctor is � D 2 ( M ) � | T ∈ H 3 , − 1 ( T ) universal Massey product and maps to the Massey product of T by H 3 , − 1 ( T ) − → MP ( T , Σ) . Fernando Muro On Massey products and triangulated categories

  41. Massey products and H 3 � Idea of the proof. Let M be a topological or algebraic model of T such that T ⊂ D ( M ) as a full triangulated subcategory. There is defined a derived 2-category D 2 ( M ) , and a projection � � D ( M ) ⊃ T . D 2 ( M ) � � � � � � � The obstruction to the existence of a splitting pseudofunctor is � D 2 ( M ) � | T ∈ H 3 , − 1 ( T ) universal Massey product and maps to the Massey product of T by H 3 , − 1 ( T ) − → MP ( T , Σ) . Fernando Muro On Massey products and triangulated categories

  42. Massey products and H 0 Proposition There is an isomorphism H 0 ( mod - T , Ext 3 , − 1 ∼ MP ( T , Σ) = ) . T skip proof Proof. ∼ Hom (Σ , S 3 ) MP ( T , Σ) = H 0 ( mod - T , Hom T (Σ , S 3 )) ∼ = H 0 ( mod - T , Ext 3 , − 1 ∼ = ) , T since Hom T (Σ M , S 3 N ) ∼ = Ext 3 T (Σ M , N ) and mod - T ։ mod - T is full and the identity on objects. Fernando Muro On Massey products and triangulated categories

  43. Massey products and H 0 Proposition There is an isomorphism H 0 ( mod - T , Ext 3 , − 1 ∼ MP ( T , Σ) = ) . T skip proof Proof. ∼ Hom (Σ , S 3 ) MP ( T , Σ) = H 0 ( mod - T , Hom T (Σ , S 3 )) ∼ = H 0 ( mod - T , Ext 3 , − 1 ∼ = ) , T since Hom T (Σ M , S 3 N ) ∼ = Ext 3 T (Σ M , N ) and mod - T ։ mod - T is full and the identity on objects. Fernando Muro On Massey products and triangulated categories

  44. Massey products and H 0 Proposition There is an isomorphism H 0 ( mod - T , Ext 3 , − 1 ∼ MP ( T , Σ) = ) . T skip proof Proof. ∼ Hom (Σ , S 3 ) MP ( T , Σ) = H 0 ( mod - T , Hom T (Σ , S 3 )) ∼ = H 0 ( mod - T , Ext 3 , − 1 ∼ = ) , T since Hom T (Σ M , S 3 N ) ∼ = Ext 3 T (Σ M , N ) and mod - T ։ mod - T is full and the identity on objects. Fernando Muro On Massey products and triangulated categories

  45. Massey products and H 0 Proposition There is an isomorphism H 0 ( mod - T , Ext 3 , − 1 ∼ MP ( T , Σ) = ) . T skip proof Proof. ∼ Hom (Σ , S 3 ) MP ( T , Σ) = H 0 ( mod - T , Hom T (Σ , S 3 )) ∼ = H 0 ( mod - T , Ext 3 , − 1 ∼ = ) , T since Hom T (Σ M , S 3 N ) ∼ = Ext 3 T (Σ M , N ) and mod - T ։ mod - T is full and the identity on objects. Fernando Muro On Massey products and triangulated categories

  46. Massey products and H 0 � � Theorem ( Ulmer’69 + Jibladze-Pirashvili’91, Lowen-van den Bergh’05) There is a spectral sequence for any r ∈ Z , H p ( mod - T , Ext q , r ⇒ H p + q , r ( T ) , T ) = and also for HH ∗ if for instance k is a field. Proposition The following diagram commutes (also for HH ∗ if k is a field). H 0 ( mod - T , Ext 3 , − 1 ) T � � edge � � � � ∼ � = � � � � � � � � MP ( T , Σ) H 3 , − 1 ( T ) the previous one Fernando Muro On Massey products and triangulated categories

  47. Massey products and H 0 � � Theorem ( Ulmer’69 + Jibladze-Pirashvili’91, Lowen-van den Bergh’05) There is a spectral sequence for any r ∈ Z , H p ( mod - T , Ext q , r ⇒ H p + q , r ( T ) , T ) = and also for HH ∗ if for instance k is a field. Proposition The following diagram commutes (also for HH ∗ if k is a field). H 0 ( mod - T , Ext 3 , − 1 ) T � � edge � � � � ∼ � = � � � � � � � � MP ( T , Σ) H 3 , − 1 ( T ) the previous one Fernando Muro On Massey products and triangulated categories

  48. Massey products and H 0 � � Theorem ( Ulmer’69 + Jibladze-Pirashvili’91, Lowen-van den Bergh’05) There is a spectral sequence for any r ∈ Z , H p ( mod - T , Ext q , r ⇒ H p + q , r ( T ) , T ) = and also for HH ∗ if for instance k is a field. Proposition The following diagram commutes (also for HH ∗ if k is a field). H 0 ( mod - T , Ext 3 , − 1 ) T � � edge � � � � ∼ � = � � � � � � � � MP ( T , Σ) H 3 , − 1 ( T ) the previous one Fernando Muro On Massey products and triangulated categories

  49. The example F ( Z / 4 ) Theorem For ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) the edge homomorphism is trivial. 0 = HML 3 ( Z / 4 ) ∼ = H 3 , − 1 ( F ( Z / 4 )) → H 0 ( mod - Z / 4 , Ext 3 , − 1 Z / 2 ∼ Z / 4 ) ∼ = Z / 2 . − Corollary (M.-Schwede-Strickland’07) The triangulated category F ( Z / 4 ) does not have any algebraic or topological model. When does a triangulated category have a model? Is there an obstruction theory for the existence of models of any kind? Fernando Muro On Massey products and triangulated categories

  50. The example F ( Z / 4 ) Theorem For ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) the edge homomorphism is trivial. 0 = HML 3 ( Z / 4 ) ∼ = H 3 , − 1 ( F ( Z / 4 )) → H 0 ( mod - Z / 4 , Ext 3 , − 1 Z / 2 ∼ Z / 4 ) ∼ = Z / 2 . − Corollary (M.-Schwede-Strickland’07) The triangulated category F ( Z / 4 ) does not have any algebraic or topological model. When does a triangulated category have a model? Is there an obstruction theory for the existence of models of any kind? Fernando Muro On Massey products and triangulated categories

  51. The example F ( Z / 4 ) Theorem For ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) the edge homomorphism is trivial. 0 = HML 3 ( Z / 4 ) ∼ = H 3 , − 1 ( F ( Z / 4 )) → H 0 ( mod - Z / 4 , Ext 3 , − 1 Z / 2 ∼ Z / 4 ) ∼ = Z / 2 . − Corollary (M.-Schwede-Strickland’07) The triangulated category F ( Z / 4 ) does not have any algebraic or topological model. When does a triangulated category have a model? Is there an obstruction theory for the existence of models of any kind? Fernando Muro On Massey products and triangulated categories

  52. The example F ( Z / 4 ) Theorem For ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) the edge homomorphism is trivial. 0 = HML 3 ( Z / 4 ) ∼ = H 3 , − 1 ( F ( Z / 4 )) → H 0 ( mod - Z / 4 , Ext 3 , − 1 Z / 2 ∼ Z / 4 ) ∼ = Z / 2 . − Corollary (M.-Schwede-Strickland’07) The triangulated category F ( Z / 4 ) does not have any algebraic or topological model. When does a triangulated category have a model? Is there an obstruction theory for the existence of models of any kind? Fernando Muro On Massey products and triangulated categories

  53. The example F ( Z / 4 ) Theorem For ( F ( Z / 4 ) , 1 F ( Z / 4 ) ) the edge homomorphism is trivial. 0 = HML 3 ( Z / 4 ) ∼ = H 3 , − 1 ( F ( Z / 4 )) → H 0 ( mod - Z / 4 , Ext 3 , − 1 Z / 2 ∼ Z / 4 ) ∼ = Z / 2 . − Corollary (M.-Schwede-Strickland’07) The triangulated category F ( Z / 4 ) does not have any algebraic or topological model. When does a triangulated category have a model? Is there an obstruction theory for the existence of models of any kind? Fernando Muro On Massey products and triangulated categories

  54. Stable Massey products A Massey product on ( T , Σ) is stable if � Σ h , Σ g , Σ f � = − Σ � h , g , f � . Therefore the submodule of stable Massey products MP s ( T , Σ) is the kernel of Σ − 1 ∗ Σ ∗ + 1 = HH 0 ( mod - T , Ext 3 , − 1 HH 0 ( mod - T , Ext 3 , − 1 MP ( T , Σ) ∼ ) − → ) . T T Moreover, { triangulated structures on ( T , Σ) } ⊂ MP s ( T , Σ) ⊂ MP ( T , Σ) . Fernando Muro On Massey products and triangulated categories

  55. Stable Massey products A Massey product on ( T , Σ) is stable if Σ − 1 � Σ h , Σ g , Σ f � = −� h , g , f � . Therefore the submodule of stable Massey products MP s ( T , Σ) is the kernel of Σ − 1 ∗ Σ ∗ + 1 = HH 0 ( mod - T , Ext 3 , − 1 HH 0 ( mod - T , Ext 3 , − 1 MP ( T , Σ) ∼ ) − → ) . T T Moreover, { triangulated structures on ( T , Σ) } ⊂ MP s ( T , Σ) ⊂ MP ( T , Σ) . Fernando Muro On Massey products and triangulated categories

  56. Stable Massey products A Massey product on ( T , Σ) is stable if Σ − 1 � Σ h , Σ g , Σ f � = −� h , g , f � . Therefore the submodule of stable Massey products MP s ( T , Σ) is the kernel of Σ − 1 ∗ Σ ∗ + 1 = HH 0 ( mod - T , Ext 3 , − 1 HH 0 ( mod - T , Ext 3 , − 1 MP ( T , Σ) ∼ ) − → ) . T T Moreover, { triangulated structures on ( T , Σ) } ⊂ MP s ( T , Σ) ⊂ MP ( T , Σ) . Fernando Muro On Massey products and triangulated categories

  57. Stable Massey products A Massey product on ( T , Σ) is stable if Σ − 1 � Σ h , Σ g , Σ f � = −� h , g , f � . Therefore the submodule of stable Massey products MP s ( T , Σ) is the kernel of Σ − 1 ∗ Σ ∗ + 1 = HH 0 ( mod - T , Ext 3 , − 1 HH 0 ( mod - T , Ext 3 , − 1 MP ( T , Σ) ∼ ) − → ) . T T Moreover, { triangulated structures on ( T , Σ) } ⊂ MP s ( T , Σ) ⊂ MP ( T , Σ) . Fernando Muro On Massey products and triangulated categories

  58. Cohomology of graded categories Let k be a field and T Σ the Z -graded k -category with T Σ ( X , Y ) n T ( X , Σ n Y ) , = n ∈ Z . A T Σ -bimodule is a degree 0 functor T op Σ ⊗ T Σ → Mod Z - k to Z -graded k -modules. The bar complex C ∗ ( T Σ ) is now a complex of T Σ -bimodules. Given a T Σ -bimodule M the Hochschild-Mitchell cohomology HH p , q ( T Σ , M ) , is the p th cohomology of C ∗ ( T Σ , M [ q ]) Hom T Σ - bimod ( C ∗ ( T Σ ) , M [ q ]) . = Example T Σ = T Σ ( − , − ) is a T Σ -bimodule and HH p , q ( T Σ ) = HH p , q ( T Σ , T Σ ) . Fernando Muro On Massey products and triangulated categories

  59. Cohomology of graded categories Let k be a field and T Σ the Z -graded k -category with T Σ ( X , Y ) n T ( X , Σ n Y ) , = n ∈ Z . A T Σ -bimodule is a degree 0 functor T op Σ ⊗ T Σ → Mod Z - k to Z -graded k -modules. The bar complex C ∗ ( T Σ ) is now a complex of T Σ -bimodules. Given a T Σ -bimodule M the Hochschild-Mitchell cohomology HH p , q ( T Σ , M ) , is the p th cohomology of C ∗ ( T Σ , M [ q ]) Hom T Σ - bimod ( C ∗ ( T Σ ) , M [ q ]) . = Example T Σ = T Σ ( − , − ) is a T Σ -bimodule and HH p , q ( T Σ ) = HH p , q ( T Σ , T Σ ) . Fernando Muro On Massey products and triangulated categories

  60. Cohomology of graded categories Let k be a field and T Σ the Z -graded k -category with T Σ ( X , Y ) n T ( X , Σ n Y ) , = n ∈ Z . A T Σ -bimodule is a degree 0 functor T op Σ ⊗ T Σ → Mod Z - k to Z -graded k -modules. The bar complex C ∗ ( T Σ ) is now a complex of T Σ -bimodules. Given a T Σ -bimodule M the Hochschild-Mitchell cohomology HH p , q ( T Σ , M ) , is the p th cohomology of C ∗ ( T Σ , M [ q ]) Hom T Σ - bimod ( C ∗ ( T Σ ) , M [ q ]) . = Example T Σ = T Σ ( − , − ) is a T Σ -bimodule and HH p , q ( T Σ ) = HH p , q ( T Σ , T Σ ) . Fernando Muro On Massey products and triangulated categories

  61. Cohomology of graded categories Proposition For any q ∈ Z , the complex C ∗ ( T Σ , T Σ [ q ]) is the homotopy fiber of ∗ Σ ∗ + 1 : C ∗ ( T , T ( − , Σ q )) − Σ − 1 → C ∗ ( T , T ( − , Σ q )) . This homotopy fiber is strongly related to the stability equation for Massey products, Σ − 1 � Σ h , Σ g , Σ f � = −� h , g , f � . Fernando Muro On Massey products and triangulated categories

  62. Cohomology of graded categories Proposition For any q ∈ Z , the complex C ∗ ( T Σ , T Σ [ q ]) is the homotopy fiber of ∗ Σ ∗ + 1 : C ∗ ( T , T ( − , Σ q )) − Σ − 1 → C ∗ ( T , T ( − , Σ q )) . This homotopy fiber is strongly related to the stability equation for Massey products, Σ − 1 � Σ h , Σ g , Σ f � = −� h , g , f � . Fernando Muro On Massey products and triangulated categories

  63. Cohomology of graded categories � � � � Corollary There is a long exact sequence for any q ∈ Z , Σ − 1 ∗ Σ ∗ + 1 HH p , q ( T ) → HH p + 1 , q ( T Σ ) → · · · · · · → HH p , q ( T Σ ) → HH p , q ( T ) − → Moreover, there is a commutative diagram edge � HH 0 ( mod - T , Ext 3 , − 1 HH 3 , − 1 ( T ) ) ∼ = MP ( T , Σ) T � MP s ( T , Σ) HH 3 , − 1 ( T Σ ) Fernando Muro On Massey products and triangulated categories

  64. A ∞ -categories An element { m 3 } ∈ HH 3 , − 1 ( T Σ ) is the same as an A 4 -category structure ( m 1 = 0 , m 2 , m 3 ) in T Σ , with m 2 the composition in T Σ . An A ∞ -category A consists of Objects X , Y , . . . Morphism Z -graded k -modules A ( X , Y ) , Identity morphisms id X ∈ A ( X , X ) 0 , n -Fold composition law, n ≥ 1, m n : A ( X 1 , X 0 ) ⊗ · · · ⊗ A ( X n , X n − 1 ) − → A ( X n , X 0 ) , deg ( m n ) 2 − n . = Fernando Muro On Massey products and triangulated categories

  65. A ∞ -categories An element { m 3 } ∈ HH 3 , − 1 ( T Σ ) is the same as an A 4 -category structure ( m 1 = 0 , m 2 , m 3 ) in T Σ , with m 2 the composition in T Σ . An A ∞ -category A consists of Objects X , Y , . . . Morphism Z -graded k -modules A ( X , Y ) , Identity morphisms id X ∈ A ( X , X ) 0 , n -Fold composition law, n ≥ 1, m n : A ( X 1 , X 0 ) ⊗ · · · ⊗ A ( X n , X n − 1 ) − → A ( X n , X 0 ) , deg ( m n ) 2 − n . = Fernando Muro On Massey products and triangulated categories

  66. A ∞ -categories An element { m 3 } ∈ HH 3 , − 1 ( T Σ ) is the same as an A 4 -category structure ( m 1 = 0 , m 2 , m 3 ) in T Σ , with m 2 the composition in T Σ . An A ∞ -category A consists of Objects X , Y , . . . Morphism Z -graded k -modules A ( X , Y ) , Identity morphisms id X ∈ A ( X , X ) 0 , n -Fold composition law, n ≥ 1, m n : A ( X 1 , X 0 ) ⊗ · · · ⊗ A ( X n , X n − 1 ) − → A ( X n , X 0 ) , deg ( m n ) 2 − n . = Fernando Muro On Massey products and triangulated categories

  67. A ∞ -categories An element { m 3 } ∈ HH 3 , − 1 ( T Σ ) is the same as an A 4 -category structure ( m 1 = 0 , m 2 , m 3 ) in T Σ , with m 2 the composition in T Σ . An A ∞ -category A consists of Objects X , Y , . . . Morphism Z -graded k -modules A ( X , Y ) , Identity morphisms id X ∈ A ( X , X ) 0 , n -Fold composition law, n ≥ 1, m n : A ( X 1 , X 0 ) ⊗ · · · ⊗ A ( X n , X n − 1 ) − → A ( X n , X 0 ) , deg ( m n ) 2 − n . = Fernando Muro On Massey products and triangulated categories

  68. A ∞ -categories An element { m 3 } ∈ HH 3 , − 1 ( T Σ ) is the same as an A 4 -category structure ( m 1 = 0 , m 2 , m 3 ) in T Σ , with m 2 the composition in T Σ . An A ∞ -category A consists of Objects X , Y , . . . Morphism Z -graded k -modules A ( X , Y ) , Identity morphisms id X ∈ A ( X , X ) 0 , n -Fold composition law, n ≥ 1, m n : A ( X 1 , X 0 ) ⊗ · · · ⊗ A ( X n , X n − 1 ) − → A ( X n , X 0 ) , deg ( m n ) 2 − n . = Fernando Muro On Massey products and triangulated categories

  69. A ∞ -categories An element { m 3 } ∈ HH 3 , − 1 ( T Σ ) is the same as an A 4 -category structure ( m 1 = 0 , m 2 , m 3 ) in T Σ , with m 2 the composition in T Σ . An A ∞ -category A consists of Objects X , Y , . . . Morphism Z -graded k -modules A ( X , Y ) , Identity morphisms id X ∈ A ( X , X ) 0 , n -Fold composition law, n ≥ 1, m n : A ( X 1 , X 0 ) ⊗ · · · ⊗ A ( X n , X n − 1 ) − → A ( X n , X 0 ) , deg ( m n ) 2 − n . = Fernando Muro On Massey products and triangulated categories

  70. A ∞ -categories The composition laws must satisfy the following equations, ( − 1 ) jp + q m i ( 1 ⊗ j ⊗ m p ⊗ 1 ⊗ q ) , 0 � n ≥ 1 . = j + p + q = n i = j + 1 + q n = 1, m 2 1 = 0, i.e. A ( X , Y ) are complexes. n = 2, m 1 m 2 = m 2 ( 1 ⊗ m 1 + m 1 ⊗ 1 ) , i.e. m 1 is a derivation for the product m 2 . n = 3, m 2 ( m 2 ⊗ 1 − 1 ⊗ m 2 ) = m 1 m 3 + m 3 ( 1 ⊗ 1 ⊗ m 1 + 1 ⊗ m 1 ⊗ 1 + m 1 ⊗ 1 ⊗ 1 ) , i.e. m 2 is associative up to homotopy. Fernando Muro On Massey products and triangulated categories

  71. A ∞ -categories The composition laws must satisfy the following equations, ( − 1 ) jp + q m i ( 1 ⊗ j ⊗ m p ⊗ 1 ⊗ q ) , 0 � n ≥ 1 . = j + p + q = n i = j + 1 + q n = 1, m 2 1 = 0, i.e. A ( X , Y ) are complexes. n = 2, m 1 m 2 = m 2 ( 1 ⊗ m 1 + m 1 ⊗ 1 ) , i.e. m 1 is a derivation for the product m 2 . n = 3, m 2 ( m 2 ⊗ 1 − 1 ⊗ m 2 ) = m 1 m 3 + m 3 ( 1 ⊗ 1 ⊗ m 1 + 1 ⊗ m 1 ⊗ 1 + m 1 ⊗ 1 ⊗ 1 ) , i.e. m 2 is associative up to homotopy. Fernando Muro On Massey products and triangulated categories

  72. A ∞ -categories The composition laws must satisfy the following equations, ( − 1 ) jp + q m i ( 1 ⊗ j ⊗ m p ⊗ 1 ⊗ q ) , 0 � n ≥ 1 . = j + p + q = n i = j + 1 + q n = 1, m 2 1 = 0, i.e. A ( X , Y ) are complexes. n = 2, m 1 m 2 = m 2 ( 1 ⊗ m 1 + m 1 ⊗ 1 ) , i.e. m 1 is a derivation for the product m 2 . n = 3, m 2 ( m 2 ⊗ 1 − 1 ⊗ m 2 ) = m 1 m 3 + m 3 ( 1 ⊗ 1 ⊗ m 1 + 1 ⊗ m 1 ⊗ 1 + m 1 ⊗ 1 ⊗ 1 ) , i.e. m 2 is associative up to homotopy. Fernando Muro On Massey products and triangulated categories

  73. A ∞ -categories The composition laws must satisfy the following equations, ( − 1 ) jp + q m i ( 1 ⊗ j ⊗ m p ⊗ 1 ⊗ q ) , 0 � n ≥ 1 . = j + p + q = n i = j + 1 + q n = 1, m 2 1 = 0, i.e. A ( X , Y ) are complexes. n = 2, m 1 m 2 = m 2 ( 1 ⊗ m 1 + m 1 ⊗ 1 ) , i.e. m 1 is a derivation for the product m 2 . n = 3, m 2 ( m 2 ⊗ 1 − 1 ⊗ m 2 ) = m 1 m 3 + m 3 ( 1 ⊗ 1 ⊗ m 1 + 1 ⊗ m 1 ⊗ 1 + m 1 ⊗ 1 ⊗ 1 ) , i.e. m 2 is associative up to homotopy. Fernando Muro On Massey products and triangulated categories

  74. A ∞ -categories An A ∞ -category is pretriangulated if the full subcategory of the derived category H 0 A ⊂ D ( A ) is a triangulated subcategory. An A ∞ -category is minimal if m 1 = 0. Proposition (Lefèvre-Hasegawa’03) A compactly generated algebraic triangulated k-category T is H 0 A of a minimal pretringulated A ∞ -category A . The underlying Z -graded k -category of A is actually T Σ , so in order to reconstruct A one just has to find m 3 , m 4 , . . . Fernando Muro On Massey products and triangulated categories

  75. A ∞ -categories An A ∞ -category is pretriangulated if the full subcategory of the derived category H 0 A ⊂ D ( A ) is a triangulated subcategory. An A ∞ -category is minimal if m 1 = 0. Proposition (Lefèvre-Hasegawa’03) A compactly generated algebraic triangulated k-category T is H 0 A of a minimal pretringulated A ∞ -category A . The underlying Z -graded k -category of A is actually T Σ , so in order to reconstruct A one just has to find m 3 , m 4 , . . . Fernando Muro On Massey products and triangulated categories

  76. A ∞ -categories An A ∞ -category is pretriangulated if the full subcategory of the derived category H 0 A ⊂ D ( A ) is a triangulated subcategory. An A ∞ -category is minimal if m 1 = 0. Proposition (Lefèvre-Hasegawa’03) A compactly generated algebraic triangulated k-category T is H 0 A of a minimal pretringulated A ∞ -category A . The underlying Z -graded k -category of A is actually T Σ , so in order to reconstruct A one just has to find m 3 , m 4 , . . . Fernando Muro On Massey products and triangulated categories

  77. A ∞ -categories An A ∞ -category is pretriangulated if the full subcategory of the derived category H 0 A ⊂ D ( A ) is a triangulated subcategory. An A ∞ -category is minimal if m 1 = 0. Proposition (Lefèvre-Hasegawa’03) A compactly generated algebraic triangulated k-category T is H 0 A of a minimal pretringulated A ∞ -category A . The underlying Z -graded k -category of A is actually T Σ , so in order to reconstruct A one just has to find m 3 , m 4 , . . . Fernando Muro On Massey products and triangulated categories

  78. A ∞ -obstructions for triangulated categories The existence of m 3 is equivalent to say that the Massey product of T is in the image of the composite edge HH 3 , − 1 ( T Σ ) − → HH 3 , − 1 ( T ) → HH 0 ( mod - T , Ext 3 , − 1 ) ∼ = MP ( T , Σ) . − T In order to check this fact, one can use the spectral sequence HH p ( mod - T , Ext q , r ⇒ HH p + q , r ( T ) T ) = and the long exact sequence Σ − 1 ∗ Σ ∗ + 1 HH p , q ( T ) → HH p + 1 , q ( T Σ ) → · · · · · · → HH p , q ( T Σ ) → HH p , q ( T ) − → Fernando Muro On Massey products and triangulated categories

  79. A ∞ -obstructions for triangulated categories The existence of m 3 is equivalent to say that the Massey product of T is in the image of the composite edge HH 3 , − 1 ( T Σ ) − → HH 3 , − 1 ( T ) → HH 0 ( mod - T , Ext 3 , − 1 ) ∼ = MP ( T , Σ) . − T In order to check this fact, one can use the spectral sequence HH p ( mod - T , Ext q , r ⇒ HH p + q , r ( T ) T ) = and the long exact sequence Σ − 1 ∗ Σ ∗ + 1 HH p , q ( T ) → HH p + 1 , q ( T Σ ) → · · · · · · → HH p , q ( T Σ ) → HH p , q ( T ) − → Fernando Muro On Massey products and triangulated categories

  80. A ∞ -obstructions for triangulated categories Lemma (Lefèvre-Hasegawa’03) Let n ≥ 5 . Given a minimal A n − 1 -category structure on T Σ , defined by ( m 1 = 0 , m 2 , m 3 , . . . , m n − 2 ) , there is a well-defined θ ( m 3 ,..., m n − 2 ) ∈ HH n , 3 − n ( T Σ ) , which vanishes if and only if there exists m n − 1 such that ( m 1 = 0 , m 2 , m 3 , . . . , m n − 2 , m n − 1 ) is an A n -category structure on T Σ . Fernando Muro On Massey products and triangulated categories

  81. Summing up the A ∞ -obstruction theory Let T be triangulated � δ ∈ H 0 ( mod - T , Ext 3 , − 1 ) . T δ must be a perm. cycle of HH p ( mod - T , Ext q , − 1 ) ⇒ HH p + q , − 1 ( T ) , T edge H 0 ( mod - T , Ext 3 , − 1 HH 3 , − 1 ( T ) − → ) , T ∆ �→ δ. Σ − 1 ∗ Σ ∗ + 1 ∆ must be in the kernel of HH 3 , − 1 ( T ) HH 3 , − 1 ( T ) , so − → HH 3 , − 1 ( T Σ ) HH 3 , − 1 ( T ) , − → { m 3 } �→ ∆ . The higher obstructions must vanish, θ ( m 3 ,..., m n − 2 ) ∈ H n , 3 − n ( T Σ ) , n ≥ 5 . Then T can be enhanced to an A ∞ -category defined over T Σ . Fernando Muro On Massey products and triangulated categories

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend