summary of the course 2014h ed
play

Summary of the course 2014h ed. Anton Evgrafov November 19, 2014 - PowerPoint PPT Presentation

Summary of the course 2014h ed. Anton Evgrafov November 19, 2014 Linear algebra background: Gauss elimination, LU/Cholesky/LDL-factorization; Rank/null space/range/adjoint; Eigenvalues, -vectors, -spaces; algebraic and geometric


  1. Summary of the course 2014h ed. Anton Evgrafov November 19, 2014

  2. Linear algebra background: ◮ Gauss elimination, LU/Cholesky/LDL-factorization; ◮ Rank/null space/range/adjoint; ◮ Eigenvalues, -vectors, -spaces; algebraic and geometric multiplicities; ◮ Induced/Frobenius matrix norm; ◮ Symmetric/Hermitian/normal/unitary matrices; ◮ Similarity (unitary or not), diagonalization, Jordan normal form, Schur factorization; ◮ Solution perturbation ∼ κ ( A )

  3. QR-factorization Q ∗ Q = I , A = QR , R ij = 0 , i ≥ j Used for: ◮ Solving least-squares problems (e.g. in GMRES/DQGMRES/MINRES/SYMMLQ) ◮ QR-algorithm for eigenvalues Computational algorithms: ◮ (modified) Gramm-Schmidt orthogonalization ◮ Hausholder reflections ◮ Givens rotations

  4. Diagonalization methods Rare instances, known: 1. Eigenvalues/vectors A = Q Λ Q T 2. Fast algorithm (e.g. FFT) v ↔ Qv ⇒ x = Q [Λ − 1 ( Q T b )] Ax = b =

  5. Matrix-splitting methods A = M − N x k +1 = M − 1 ( Nx k + b ) e k +1 = M − 1 Ne k Theorem ⇒ ρ ( M − 1 N ) < 1. � e k � → 0 ∀ x 0 ⇐ Asymptotically � e k +1 � / � e k � ∼ ρ ( M − 1 N ). Slow!

  6. Matrix-splitting methods Standard examples: ◮ Jacobi: M = diag A ◮ Gauss-Seidel: M = triu A ◮ Block variations Use: ◮ Smoothers in multigrid ◮ Preconditioners: additive Schwarz ≈ block-Jacobi; multiplicative Schwarz ≈ block-GS

  7. Projection operators P 2 = P ◮ I − P also projector ◮ Null space/range: ker P ⊕ range P = C n ◮ y = Px ⇐ ⇒ y ∈ range P & x − y = ( I − P ) x ∈ ker P ⇐ ⇒ y ∈ range P & x − y = ( I − P ) x ⊥ [ ker P ] ⊥ ◮ Orthogonal projectors: P T = P Used in this course: analysis of projection methods

  8. Projection/Petrov-Galerkin framework dim K = dim L << dim C n Find: x ∈ x 0 + K such that r = b − Ax ⊥ L

  9. Projection/Petrov-Galerkin framework dim K = dim L << dim C n Find: x ∈ x 0 + K such that r = b − Ax ⊥ L ◮ Error projection: A SPD, L = K Theorem y ∈K � y − A − 1 b � A x ∈ arg min

  10. Projection/Petrov-Galerkin framework dim K = dim L << dim C n Find: x ∈ x 0 + K such that r = b − Ax ⊥ L ◮ Error projection: A SPD, L = K Theorem y ∈K � y − A − 1 b � A x ∈ arg min ◮ Residual projection: L = A K Theorem x ∈ arg min y ∈K � b − Ay � 2

  11. 1D variations: ◮ L = K = e k ⇐ ⇒ Gauss-Seidel ◮ L = K = r = b − Ax ⇐ ⇒ steepest descent ◮ . . .

  12. Krylov subspace methods: K = K m ( A , r 0 ) = span � r 0 , Ar o , . . . , A m − 1 r 0 � ◮ L = K : FOM, CG, SYMMLQ ◮ L = A K : GMRES, MINRES

  13. Arnoldi: Generating ON basis for K m ( A , r 0 )! V T m V m = I , range V m = K m ( A , r 0 ) AV m = V m +1 ¯ H m , [ ¯ H m ] ij = 0 if i > j + 1. Algorithms: (modified) Gramm-Schmidt, Hausholder Arnoldi used in: FOM, GMRES

  14. Cannot store Arnoldi vectors: ◮ Restarts: FOM(k), GMRES(k) ◮ Incomplete (partial) orthogonalization: IOM/DIOM, QGMRES/DQGMRES

  15. Lanczos: A = A T = ⇒ H m = H T m = ⇒ tri-diagonal! In Gramm-Schmidt, only need to orthogonolaze to two previous Arnoldi vectors (3-term recursion) = ⇒ computational savings O ( m 2 n ) → O ( mn ). Lanczos used in: D-LANCZOS ( ≈ CG), MINRES ( ≈ DQGMRES on symmetric A ), SYMMLQ, Lanczos method for eigenvalues (+Rayleigh-Ritz)

  16. “Typical” convergence theorem: Convergence, GMRES, diagonalizable case: A = X Λ X − 1 Theorem � r k � 2 ≤ κ ( X ) min p max | p ( λ i ) | i p -polynomial degree k , p (0) = 1.

  17. Preconditioning: ◮ Left: M − 1 Ax = M − 1 b ◮ Right: AM − 1 u = b , x = M − 1 u . Goal: M − 1 A is easier for Krylov methods than A (e.g. has few clustered eigenvalues) M − 1 ≈ A − 1 but “simple” to apply (every Krylov iteration) ILU, SAI, multigrid, domain decomposition (DD). . .

  18. 2-grid algorithm: 1. (pre-)smooth error/residual: underrelaxed Jacobi, GS, . . . 2. restrict residual to coarse grid: r H = I H h r h 3. appx. solve A H e H = − r H 4. interpolate onto fine grid: e h = I h H e H 5. apply correction: x h = x h − e h 6. (post-)smooth error/residual after interpolations 7. repeat Multigrid: recursion at step 3.

  19. Domain decomposition: ◮ PDE-level: overlapping (Schwarz) vs non-overlapping (Schur). Then discretize and solve! Use special block-structure of the discretized system when solving. ◮ Discrete level: additive/multiplicative Schwarz

  20. SVD decomposition and applications A = U Σ V ∗ ◮ U , V - unitary ◮ Σ - diagonal, positive σ = [ λ ( AA ∗ )] 1 / 2 = [ λ ( A ∗ A )] 1 / 2 Uses: ◮ Least-squares ◮ Low rank approximation of A ◮ Range space ◮ Matrix norms

  21. Eigenvalue algorithms for small problems: Idea: eigenvalue revealing similarity transformation (Schur factorization): A = QRQ T . Phase I: Hessenberg (non-symmetric)/tridiagonalization (symmetric) A = QHQ T , Q T Q = I , H ij = 0 , i > j + 1 Phase I algorithms: Hausholder transformations

  22. Eigenvalue algorithms for small problems: Phase II algorithms: ◮ Rayleigh quotient: λ ≈ r ( v ) = [ v T Av ] / [ v T v ] ◮ Power iteration: v k = A k v 0 / � · � ; eigenvector corr. largest in magnitude eigenvalue; slow convergence ◮ Inverse iteration: v k = A − k v 0 / � · � ; smallest in magn eigenvalue ◮ Shifted inverse iteration: v k = ( A − µ I ) − k v 0 / � · � eigenvalue closest to µ ◮ Rayleigh iteration: v k = ( A − λ k I ) − k v 0 / � · � , λ k = r ( v k ). Cubically convergent for symmetric matrices!

  23. Eigenvalue algorithms for small problems: Phase II algorithms: ◮ Simultaneous versions of power iterations; and their relation to ◮ QR-algorithm with shifts: Q k R k = A k − µ k I ; A k +1 = R k Q k + µ k I . ◮ Power/inverse power iteration for first/last column of Q k ◮ Wilkinson shift

  24. Perturbation analysis for symmetric eigenvalue problems ◮ Eigenvalues (symm matrices): | λ ( A ) − λ ( A + E ) | ≤ � E � 2 | α − λ ( A ) | ≤ � Av − α v � 2 , ∀� v � 2 = 1 ◮ Eigenvectors (symm matrices): 1 2 sin(2 angle) ∼ � perturbation � 2 eigenvalue gap

  25. Eigenvalue algorithms for large problems: ◮ Lanczos for tridiagonalization: T k = Q T k AQ k ◮ Rayleigh-Ritz idea: λ ( A ) ≈ λ ( T k ); error estimates available ◮ Use Phase-II algorithms on T k .

  26. Most important omissions: ◮ Bi-orthogonalization Krylov methods ( ≈ non-symmetric Lanczos): bi-CG, bi-CG-stab, QMR, TFQMR (transpose-free QMR). Most need v �→ A T v in addition to v �→ Av ◮ Multigrid cycles: V, W, F, full-multigrid ◮ Algebraic multigrid ◮ Other eigenvalue algorithms for “small” problems: Jacobi (most accurate); divide & conquer (fastest for symmetric matrices); ◮ Other eigenvalue algorithms for “large” non-symmetric problems: ≈ Rayleigh-Ritz idea + Arnoldi or biorthogonalization ◮ Algorithms for SVD

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend