rational krylov methods for f a b
play

Rational Krylov methods for f ( A ) b Michael Eiermann, Oliver G. - PowerPoint PPT Presentation

Rational Krylov methods for f ( A ) b Michael Eiermann, Oliver G. Ernst, and Stefan Gttel DWCAA09 September 8th, 2009 Pr sr t tr f ( A ) b r A s r


  1. Rational Krylov methods for f ( A ) b Michael Eiermann, Oliver G. Ernst, and Stefan Güttel DWCAA09 September 8th, 2009

  2. Pr♦❜❧❡♠ ❲❡ ❝♦♥s✐❞❡r t❤❡ ✈❡❝t♦r f ( A ) b ✱ ✇❤❡r❡ ◮ A ✐s ❛ ❧❛r❣❡ N ✲❜②✲ N ♠❛tr✐①✱ ◮ b ✐s ❛ ✈❡❝t♦r ♦❢ ❧❡♥❣t❤ N ✱ ◮ f ✐s ❛ s✉✐t❛❜❧❡ ❢✉♥❝t✐♦♥✳ ❈♦♠♣✉t❡ ❛♣♣r♦①✐♠❛t✐♦♥ f m ≈ f ( A ) b ❢r♦♠ ❛ r❛t✐♦♥❛❧ ❑r②❧♦✈ s♣❛❝❡✳

  3. ❲❤❛t ✐s ❛ r❛t✐♦♥❛❧ ❑r②❧♦✈ s♣❛❝❡❄ ▲❡t { ξ 1 , ξ 2 , . . . } ⊆  ⊂ C ❜❡ ❛ ❣✐✈❡♥ s❡q✉❡♥❝❡ ♦❢ ♣♦❧❡s ✳ ❉❡✜♥❡ t❤❡ ♣♦❧②♥♦♠✐❛❧s � m q m ( z ) = ( z − ξ j ) ∈ P m . j = 1 ξ j � = ∞ ❆ss✉♠❡ t❤❛t q m ( A ) − 1 ❡①✐sts✳ ❚❤❡♥ Q m + 1 ( A, b ) = K m + 1 ( A, q m ( A ) − 1 b ) ✐s t❤❡ r❛t✐♦♥❛❧ ❑r②❧♦✈ s♣❛❝❡ ❛ss♦❝✐❛t❡❞ ✇✐t❤ ( A, b , q m ) ✳

  4. ❙♣❡❝✐❛❧ ❝❛s❡s ◮  = {∞} ⇒ ♣♦❧②♥♦♠✐❛❧ ❑r②❧♦✈ Q m + 1 = K m + 1 ❬◆❛✉ts ✫ ❲②❛tt ✽✸❪ ❬✈❛♥ ❞❡r ❱♦rst ✽✼❪ ❬❉r✉s❦✐♥ ✫ ❑♥✐③❤♥❡r♠❛♥ ✽✽❪ ❬●❛❧❧♦♣♦✉❧♦s ✫ ❙❛❛❞ ✾✷❪ ❬❍♦❝❤❜r✉❝❦ ✫ ▲✉❜✐❝❤ ✾✼❪ ❬❊✐❡r♠❛♥♥ ✫ ❊r♥st ✵✻❪ ◮  = { ξ } ⇒ s❤✐❢t✲✐♥✈❡rt ❑r②❧♦✈ ❬▼♦r❡t ✫ ◆♦✈❛t✐ ✵✹❪ ❬✈❛♥ ❞❡♥ ❊s❤♦❢ ✫ ❍♦❝❤❜r✉❝❦ ✵✻❪ ◮  = {0 , ∞} ⇒ ❡①t❡♥❞❡❞ ❑r②❧♦✈ ❬❉r✉s❦✐♥ ✫ ❑♥✐③❤♥❡r♠❛♥ ✾✽❪ ❬❑♥✐③❤♥❡r♠❛♥ ✫ ❙✐♠♦♥❝✐♥✐ ✵✽❪ ◮  ❛r❜✐tr❛r② ⇒ r❛t✐♦♥❛❧ ❑r②❧♦✈ ❬❘✉❤❡ ✽✹❪ ❬❇❡❛tt✐❡ ✵✹❪ ❬❇❡❝❦❡r♠❛♥♥ ✫ ❘❡✐❝❤❡❧ ✵✽❪ ❬❑♥✐③❤♥❡r♠❛♥ ❡t ❛❧ ✵✽❪

  5. ❘❛t✐♦♥❛❧ ❆r♥♦❧❞✐ ❛❧❣♦r✐t❤♠ ❬❘✉❤❡ ✽✹✴✾✹❪ Input ✿ A, b , { ξ 1 , ξ 2 , . . . , ξ m } v 1 : = b / � b � for j = 1 , 2 , . . . , m do x : = ( I − A/ξ j ) − 1 A v j H ( 1 : j, j ) : = [ v 1 , . . . , v j ] ∗ x x : = x − [ v 1 , . . . , v j ] H ( 1 : j, j ) H ( j + 1 , j ) : = � x � v j + 1 : = x /H ( j + 1 , j ) end ❨✐❡❧❞s ❞❡❝♦♠♣♦s✐t✐♦♥ AV m + 1 ( I m + H m X − 1 m ) = V m + 1 H m ✳

  6. ❚❤❡♥ ✐s ♦❢ r❛♥❦ ✳ ❢♦r ❛ ✈❡❝t♦r ✳ ❋♦r ❡✈❡r② ✈❡❝t♦r t❤❡r❡ ❡①✐sts ❛ ✉♥✐q✉❡ ♣♦❧②♥♦♠✐❛❧ ✱ ✱ s✉❝❤ t❤❛t ✳ ❍❡♥❝❡✱ ✐❢ ✐s ✐♥✈❡rt✐❜❧❡✱ ✳ ❘❛t✐♦♥❛❧ ❑r②❧♦✈ ❞❡❝♦♠♣♦s✐t✐♦♥s ❚❤❡♦r❡♠ ✭●✳✱ ✷✵✵✾✮✿ ▲❡t ❛ ❣❡♥❡r❛❧ ❞❡❝♦♠♣♦s✐t✐♦♥ AV m + 1 K m = V m + 1 H m ❜❡ ❣✐✈❡♥✱ ✇❤❡r❡ V m + 1 ❤❛s m + 1 ❧✐♥❡❛r❧② ✐♥❞❡♣❡♥❞❡♥t ❝♦❧✉♠♥s✱ K m ∈ C ( m + 1 ) × m ✱ H m ∈ C ( m + 1 ) × m ✱ ❛♥❞ H m ✐s ♦❢ r❛♥❦ m ✳

  7. ❘❛t✐♦♥❛❧ ❑r②❧♦✈ ❞❡❝♦♠♣♦s✐t✐♦♥s ❚❤❡♦r❡♠ ✭●✳✱ ✷✵✵✾✮✿ ▲❡t ❛ ❣❡♥❡r❛❧ ❞❡❝♦♠♣♦s✐t✐♦♥ AV m + 1 K m = V m + 1 H m ❜❡ ❣✐✈❡♥✱ ✇❤❡r❡ V m + 1 ❤❛s m + 1 ❧✐♥❡❛r❧② ✐♥❞❡♣❡♥❞❡♥t ❝♦❧✉♠♥s✱ K m ∈ C ( m + 1 ) × m ✱ H m ∈ C ( m + 1 ) × m ✱ ❛♥❞ H m ✐s ♦❢ r❛♥❦ m ✳ ❚❤❡♥ 1. K m ✐s ♦❢ r❛♥❦ m ✳ 2. colspan ( V m + 1 ) = K m + 1 ( A, q ) ❢♦r ❛ ✈❡❝t♦r q ✳ 3. ❋♦r ❡✈❡r② ✈❡❝t♦r b ∈ colspan ( V m + 1 ) t❤❡r❡ ❡①✐sts ❛ ✉♥✐q✉❡ ♣♦❧②♥♦♠✐❛❧ q m ✱ deg ( q m ) ≤ m ✱ s✉❝❤ t❤❛t b = q m ( A ) q ✳ ❍❡♥❝❡✱ ✐❢ q m ( A ) ✐s ✐♥✈❡rt✐❜❧❡✱ colspan ( V m + 1 ) = Q m + 1 ( A, b ) ✳

  8. ❘❛t✐♦♥❛❧ ❑r②❧♦✈ ❛♣♣r♦①✐♠❛t✐♦♥s ❆ s♣❡❝✐❛❧ ❝❛s❡ ✐s t❤❡ ✭r❡❞✉❝❡❞✮ ❞❡❝♦♠♣♦s✐t✐♦♥ AV m K m = V m + 1 H m . ❆s ❛♥ ❛♣♣r♦①✐♠❛t✐♦♥ t♦ f ( A ) b ✇❡ ❝♦♥s✐❞❡r f m : = V m f ( H m K − 1 m ) V † m b . ❚❤❡♦r❡♠ ✭■♥t❡r♣♦❧❛t✐♦♥✮✿ ❚❤❡r❡ ❤♦❧❞s p m − 1 f m = r m ( A ) b = ( A ) b , q m − 1 ✇❤❡r❡ r m ❍❡r♠✐t❡✲✐♥t❡r♣♦❧❛t❡s f ❛t Λ ( H m K − 1 m ) ✳

  9. ❊①❛♠♣❧❡ ❚❤❡ ✐t❡r❛t✐♦♥ v 1 = b , ( I − A/ξ j ) − 1 ( A − α j I ) v j , β j v j + 1 = j = 1 , . . . , m, ②✐❡❧❞s ❛ ❞❡❝♦♠♣♦s✐t✐♦♥ AV m + 1 K m = V m + 1 H m ✇✐t❤ V m + 1 = [ v 1 , . . . , v m + 1 ] ✱     1 α 1          β 1 / ξ 1 1   β 1 α 2          ✳✳✳ ✳✳✳     K m = β 2 / ξ 2 ❛♥❞ H m = β 2 .         ✳✳✳ ✳✳✳      1   α m      β m / ξ m β m

  10. P A I N Preassigned Poles and Interpolation Nodes m e t h o d ❊①❛♠♣❧❡ ❚❤❡ ✐t❡r❛t✐♦♥ v 1 = b , ( I − A/ξ j ) − 1 ( A − α j I ) v j , β j v j + 1 = j = 1 , . . . , m, ❝❛♥ ❜❡ ✉s❡❞ ❢♦r ❡①♣❧✐❝✐t r❛t✐♦♥❛❧ ✐♥t❡r♣♦❧❛t✐♦♥✿ ❇② ❚❤❡♦r❡♠ ✭■♥t❡r♣♦❧❛t✐♦♥✮ ✇❡ ❦♥♦✇ t❤❛t p m − 1 f m = V m f ( H m K − 1 m ) e 1 = r m ( A ) b = ( A ) b , q m − 1 ✇❤❡r❡ r m ❍❡r♠✐t❡✲✐♥t❡r♣♦❧❛t❡s f ❛t Λ ( H m K − 1 m ) = { α 1 , . . . , α m } ✳

  11. P ❊①❛♠♣❧❡ A I N Preassigned Poles and Interpolation Nodes ❚❤❡ ✐t❡r❛t✐♦♥ m e t h o d v 1 = b , ( I − A/ξ j ) − 1 ( A − α j I ) v j , β j v j + 1 = j = 1 , . . . , m, ❝❛♥ ❜❡ ✉s❡❞ ❢♦r ❡①♣❧✐❝✐t r❛t✐♦♥❛❧ ✐♥t❡r♣♦❧❛t✐♦♥✿ ❇② ❚❤❡♦r❡♠ ✭■♥t❡r♣♦❧❛t✐♦♥✮ ✇❡ ❦♥♦✇ t❤❛t p m − 1 f m = V m f ( H m K − 1 m ) e 1 = r m ( A ) b = ( A ) b , q m − 1 ✇❤❡r❡ r m ❍❡r♠✐t❡✲✐♥t❡r♣♦❧❛t❡s f ❛t Λ ( H m K − 1 m ) = { α 1 , . . . , α m } ✳

  12. ❘❡♠❛r❦s ◮ 2 ✈❡❝t♦rs st♦r❛❣❡ ♥❡❡❞✱ 0 ✐♥♥❡r✲♣r♦❞✉❝ts ◮ ■❢ ❛❧❧ ξ j = ∞ ⇒ ♣♦❧②♥♦♠✐❛❧ ✐♥t❡r♣♦❧❛t✐♦♥ ❛t { α 1 , . . . , α m } ◮ P♦❧②♥♦♠✐❛❧ ✐♥t❡r♣♦❧❛t✐♦♥ ♠❡t❤♦❞s ❤❛✈❡ ❜❡❡♥ ❝♦♥s✐❞❡r❡❞ ❜❡❢♦r❡ ❬❍✉✐s✐♥❣❛ ❡t ❛❧ ✾✾❪ ❬❇❡r❣❛♠❛s❝❤✐✱ ❈❛❧✐❛r✐ ✫ ❱✐❛♥❡❧❧♦ ✵✹❪ ◮ ❋♦r { α 1 , . . . , α m } ✉s❡ ▲❡❥❛ ♣♦✐♥ts✱ s❝❛❧❡❞ t♦ ❛ s❡t ♦❢ ✉♥✐t ❝❛♣❛❝✐t② ❢♦r st❛❜✐❧✐t② ❬❘❡✐❝❤❡❧ ✾✵❪ ✳ ◮ ◆♦ s✉❝❤ s❝❛❧✐♥❣ ✐s ♥❡❝❡ss❛r② ✇✐t❤ t❤❡ P❆■◆ ♠❡t❤♦❞✿ s✐♠♣❧② ❝❤♦♦s❡ β j s✉❝❤ t❤❛t � v j + 1 � = 1 ✱ j = 1 , . . . , m ✳ ◮ ❋♦r r❛t✐♦♥❛❧ ✐♥t❡r♣♦❧❛t✐♦♥ ✉s❡ ▲❡❥❛✲❇❛❣❜② ♣♦✐♥ts✳

  13. � A b ✱ A = diag ( 1 , . . . , 1000 ) ✱ b = [ 1 , . . . , 1 ] T ✳ ❈♦♠♣✉t❡✿ f ( A ) b =

  14. � A b ✱ A = diag ( 1 , . . . , 1000 ) ✱ b = [ 1 , . . . , 1 ] T ✳ ❈♦♠♣✉t❡✿ f ( A ) b =

  15. 0 10 � κ − 1 R = � κ + 1 ≈ 0 . 94 −5 10 error −10 10 R ≈ 0 . 36 −15 10 0 20 40 60 80 100 120 140 160 order m

  16. 0 10 −5 10 error −10 10 ❩♦❧♦t❛r❡✈✬s ♣♦❧❡s −15 10 0 20 40 60 80 100 120 140 160 order m

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend