submodular partition functions and duality treewidth
play

Submodular partition functions and duality treewidth/bramble Omid - PowerPoint PPT Presentation

Submodular partition functions and duality treewidth/bramble Omid Amini 1 eric Mazoit 2 Nicolas Nisse 3 Fr ed e 4 St ephan Thomass Projet Mascotte, INRIA Sophia Antipolis. LABRI, Universit e Bordeaux. LRI, Universit e


  1. Submodular partition functions and duality treewidth/bramble Omid Amini 1 eric Mazoit 2 Nicolas Nisse 3 Fr´ ed´ e 4 St´ ephan Thomass´ Projet Mascotte, INRIA Sophia Antipolis. LABRI, Universit´ e Bordeaux. LRI, Universit´ e Paris-Sud. LIRMM, Universit´ e Montpellier II. JCALM 07 , Montpellier 1/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  2. Min-Max Theorem for several width parameters Our goal Duality treewidth/bramble [Seymour and Thomas 93] New proof of the min-max theorem for treewidth Our tool Submodular partition functions Generalization Interpretation of several width-parameters (treewidth, pathwidth, branchwidth, rankwidth, treewidth of matroid) in terms of submodular partition functions. 2/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  3. Min-Max Theorem for several width parameters Our goal Duality treewidth/bramble [Seymour and Thomas 93] New proof of the min-max theorem for treewidth Our tool Submodular partition functions Generalization Interpretation of several width-parameters (treewidth, pathwidth, branchwidth, rankwidth, treewidth of matroid) in terms of submodular partition functions. 2/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  4. Min-Max Theorem for several width parameters Our goal Duality treewidth/bramble [Seymour and Thomas 93] New proof of the min-max theorem for treewidth Our tool Submodular partition functions Generalization Interpretation of several width-parameters (treewidth, pathwidth, branchwidth, rankwidth, treewidth of matroid) in terms of submodular partition functions. 2/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  5. Tree decomposition and treewidth 3/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  6. Tree decomposition and treewidth a tree T and bags ( X t ) t ∈ V ( T ) 3/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  7. Tree decomposition and treewidth a tree T and bags ( X t ) t ∈ V ( T ) every vertex of G is in at least one bag; 3/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  8. Tree decomposition and treewidth a tree T and bags ( X t ) t ∈ V ( T ) every vertex of G is in at least one bag; both ends of an edge of G are in at least one same bag; 3/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  9. Tree decomposition and treewidth a tree T and bags ( X t ) t ∈ V ( T ) every vertex of G is in at least one bag; both ends of an edge of G are in at least one same bag; for any vertex of G , all bags that contain it form a subtree. 3/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  10. Tree decomposition and treewidth a tree T and bags ( X t ) t ∈ V ( T ) every vertex of G is in at least one bag; both ends of an edge of G are in at least one same bag; for any vertex of G , all bags that contain it form a subtree . width = Size of largest Bag -1 3/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  11. Tree decomposition and treewidth a tree T and bags ( X t ) t ∈ V ( T ) every vertex of G is in at least one bag; both ends of an edge of G are in at least one same bag; for any vertex of G , all bags that contain it form a subtree . width = Size of largest Bag -1 treewidth of G tw ( G ), minimum width among all tree-decompositions. 3/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  12. Example of the Grid G k ∗ k It is easy to find a tree-decomposition, 4/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  13. Example of the Grid G k ∗ k It is easy to find a tree-decomposition, 4/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  14. Example of the Grid G k ∗ k It is easy to find a tree-decomposition, 4/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  15. Example of the Grid G k ∗ k It is easy to find a tree-decomposition, 4/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  16. Example of the Grid G k ∗ k It is easy to find a tree-decomposition, tw ( G k ∗ k ) ≤ k 4/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  17. Example of the Grid G k ∗ k It is easy to find a tree-decomposition, tw ( G k ∗ k ) ≤ k How to prove that it is an optimal tree-decomposition? 4/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  18. Bramble and bramble-number Definition Bramble B : set of connected subsets of V ( G ), pairwise touching. for any B ∈ B , B ⊆ V ( G ); for any B i , B j ∈ B , B i ∪ B j connected. A transversal is a subset T ⊆ V ( G ) such that: For all B i ∈ B , B i ∩ T � = ∅ Order of a bramble Order ( B ): Minimum size of a transversal of B . 5/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  19. Bramble and bramble-number Definition Bramble B : set of connected subsets of V ( G ), pairwise touching. for any B ∈ B , B ⊆ V ( G ); for any B i , B j ∈ B , B i ∪ B j connected. A transversal is a subset T ⊆ V ( G ) such that: For all B i ∈ B , B i ∩ T � = ∅ Order of a bramble Order ( B ): Minimum size of a transversal of B . 5/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  20. Bramble and bramble-number Definition Bramble B : set of connected subsets of V ( G ), pairwise touching. for any B ∈ B , B ⊆ V ( G ); for any B i , B j ∈ B , B i ∪ B j connected. Order of a bramble Order ( B ): Minimum size of a transversal of B . Bramble-number bn ( G ) bn ( G ): maximum order among all brambles of G . 5/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  21. Bramble of the Grid G k ∗ k B 1 set of all crosses (one row + one column) 6/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  22. Bramble of the Grid G k ∗ k B 1 set of all crosses (one row + one column) Order ( B 1 ) = k , therefore bn ( G k ∗ k ) ≥ k 6/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  23. Bramble of the Grid G k ∗ k B 2 first column + last row minus its first vertex + set of all crosses of G ( k − 1) ∗ ( k − 1) 6/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  24. Bramble of the Grid G k ∗ k B 2 first column + last row minus its first vertex + set of all crosses of G ( k − 1) ∗ ( k − 1) Order ( B 2 ) = k + 1, therefore bn ( G k ∗ k ) ≥ k + 1 6/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  25. Bramble of the Grid G k ∗ k B 2 first column + last row minus its first vertex + set of all crosses of G ( k − 1) ∗ ( k − 1) Order ( B 2 ) = k + 1, therefore bn ( G k ∗ k ) ≥ k + 1 How to prove that it is a maximal bramble? 6/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  26. Min-Max Theorem For any graph G , tw ( G ) + 1 = bn ( G ) Seymour and Thomas , J. of Comb. Th., 1993. Graph searching and a min-max theorem for tree-width min max | X t | = max min | Y | ( T , X ) tree − dec . of G t ∈ V ( T ) B bramble of G Y transv . of B Example of the grid tw ( G k ∗ k ) + 1 = bn ( G k ∗ k ) = k + 1 7/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  27. Min-Max Theorem For any graph G , tw ( G ) + 1 = bn ( G ) Seymour and Thomas , J. of Comb. Th., 1993. Graph searching and a min-max theorem for tree-width min max | X t | = max min | Y | ( T , X ) tree − dec . of G t ∈ V ( T ) B bramble of G Y transv . of B Example of the grid tw ( G k ∗ k ) + 1 = bn ( G k ∗ k ) = k + 1 7/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  28. Min-Max Theorem For any graph G , tw ( G ) + 1 = bn ( G ) Seymour and Thomas , J. of Comb. Th., 1993. Graph searching and a min-max theorem for tree-width min max | X t | = max min | Y | ( T , X ) tree − dec . of G t ∈ V ( T ) B bramble of G Y transv . of B In terms of graph searching Bramble of order k + 1 = winning strategy for a visible fugitive against k searchers. Tree-decomposition of width k = winning strategy for k + 1 searchers against any visible fugitive. 7/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  29. Partitioning-tree Definition A set E . A partitioning-tree T on E T a tree; a bijection between E and the set of leaves of T . T -partitions T defines a set of partitions of E . any edge e ∈ E ( T ) ⇒ a bipartition T e of E ; any vertex v ∈ V ( T ) ⇒ a partition T v of E . 8/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

  30. Partitioning-tree E = {a,b,c,d,e,f} a b a b f c f c e d { a , f , bcde } { bc , adef} e a b e c d d { acd , ebf } f 8/22 O. Amini, F. Mazoit, N. Nisse, S. Thomass´ e Submodular partition functions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend