sublocales of d frames
play

Sublocales of d-frames Anna Laura Suarez University of Birmingham - PowerPoint PPT Presentation

Sublocales of d-frames Anna Laura Suarez University of Birmingham axs1431@cs.bham.ac.uk September 28, 2018 Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 1 / 18 Overview Bitopological spaces 1


  1. Sublocales of d-frames Anna Laura Suarez University of Birmingham axs1431@cs.bham.ac.uk September 28, 2018 Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 1 / 18

  2. Overview Bitopological spaces 1 Intuition and motivation The category BiTop D-frames 2 Intuition and motivation The category dFrm Sublocales of d-frames 3 The general case Concrete examples Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 2 / 18

  3. Bitopological spaces Some topologies naturally arise as join of two other ones. The Euclidian topology on R is generated by the lower open intervals { ( −∞ , r ) : r ∈ R } and the upper ones { ( r , ∞ ) : r ∈ R } . Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 3 / 18

  4. Bitopological spaces Some topologies naturally arise as join of two other ones. The Euclidian topology on R is generated by the lower open intervals { ( −∞ , r ) : r ∈ R } and the upper ones { ( r , ∞ ) : r ∈ R } . For a Priestley space ( X , ≤ ) the topology is the join of two spectral spaces: the ones of open upsets and open downsets. Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 3 / 18

  5. Bitopological spaces Some topologies naturally arise as join of two other ones. The Euclidian topology on R is generated by the lower open intervals { ( −∞ , r ) : r ∈ R } and the upper ones { ( r , ∞ ) : r ∈ R } . For a Priestley space ( X , ≤ ) the topology is the join of two spectral spaces: the ones of open upsets and open downsets. The Vietoris hyperspace VX of a compact Hausdorff space X has as underlying set the closed subsets { X \ U : U ∈ Ω( X ) } . Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 3 / 18

  6. Bitopological spaces Some topologies naturally arise as join of two other ones. The Euclidian topology on R is generated by the lower open intervals { ( −∞ , r ) : r ∈ R } and the upper ones { ( r , ∞ ) : r ∈ R } . For a Priestley space ( X , ≤ ) the topology is the join of two spectral spaces: the ones of open upsets and open downsets. The Vietoris hyperspace VX of a compact Hausdorff space X has as underlying set the closed subsets { X \ U : U ∈ Ω( X ) } . The topology is the join of upper and lower topologies, with bases: � U = { C ∈ VX : C ⊆ U } . ♦ U = { C ∈ VX : C ∩ U � = ∅} Where U varies over Ω( X ). Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 3 / 18

  7. Bitopological spaces A bitopological space is a structure ( X , τ + , τ − ) where X is a set and τ + and τ − two topologies on it. We call τ + the upper , or positive , topology. We call τ − the negative , or lower , topology. The category BiTop has bitopological spaces as objects, bicontinuous functions as maps. Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 4 / 18

  8. D-frames: intuition D-frames are quadruples ( L + , L − , con , tot) where L + and L − are frames, and con , tot ⊆ L + × L − ; satisfying some axioms. The intuition is: L + and L − are the frames of positive and negative opens respectively. The pairs of opens in con are the disjoint pairs. The pairs of opens in tot are the covering pairs (i.e. those whose union covers the whole space). Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 5 / 18

  9. D-frames: example For any two frames L + and L − we can set con and tot to be as small as the axiom allow. That is we set: x + x − ∈ con if and only if x + = 0 + or x − = 0 − . x + x − ∈ tot if and only if x + = 1 + or x − = 1 − . Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 6 / 18

  10. D-frames: example For any two frames L + and L − we can set con and tot to be as small as the axiom allow. That is we set: x + x − ∈ con if and only if x + = 0 + or x − = 0 − . x + x − ∈ tot if and only if x + = 1 + or x − = 1 − . The following is a bitopological space with its d-frame of opens. Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 6 / 18

  11. D-frames: the two orders On the product L + × L − we have: The information order ⊑ : we define a + a − ⊑ b + b − if and only if a + ≤ b + and a − ≤ b − . The logical order ≤ : we define a + a − ≤ b + b − if and only if a + ≤ b + and b − ≤ a − . Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 7 / 18

  12. D-frames: axioms A quadruple ( L + , L − , con , tot) where L + and L − are frames and con , tot ⊆ L + × L − is a d-frame if the following four axioms hold: (D1) con is a ⊑ -downset and tot is a ⊑ -upset. Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 8 / 18

  13. D-frames: axioms A quadruple ( L + , L − , con , tot) where L + and L − are frames and con , tot ⊆ L + × L − is a d-frame if the following four axioms hold: (D1) con is a ⊑ -downset and tot is a ⊑ -upset. (D2) con and tot are ≤ -sublattices. In particular 1 + 0 − , 0 + 1 − ∈ con ∩ tot. (D3) The set con is Scott closed. Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 8 / 18

  14. D-frames: axioms A quadruple ( L + , L − , con , tot) where L + and L − are frames and con , tot ⊆ L + × L − is a d-frame if the following four axioms hold: (D1) con is a ⊑ -downset and tot is a ⊑ -upset. (D2) con and tot are ≤ -sublattices. In particular 1 + 0 − , 0 + 1 − ∈ con ∩ tot. (D3) The set con is Scott closed. (D4). Whenever a + b − ∈ con and a + c − ∈ tot we have b − ≤ c − . Similarly whenever b + a − ∈ con and c + a − ∈ tot we have b + ≤ c + . Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 8 / 18

  15. The category dFrm The category dFrm has d-frames as objects. A morphism f : ( L + , L − , con L , tot L ) → ( M + , M − , con M , tot M ) is defined to be a pair of frame maps ( f + , f − ) : ( L + , L − ) → ( M + , M − ) such that f + × f − : L + × L − → M + × M − preserves con and tot. Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 9 / 18

  16. Pseudocomplements Let L = ( L + , L − con , tot) be a d-frame. Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 10 / 18

  17. Pseudocomplements Let L = ( L + , L − con , tot) be a d-frame. Definition For a + ∈ L + , the element ∼ a + := � { x − ∈ L − : a + x − ∈ con } is the pseudocomplement of a + . Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 10 / 18

  18. Pseudocomplements Let L = ( L + , L − con , tot) be a d-frame. Definition For a + ∈ L + , the element ∼ a + := � { x − ∈ L − : a + x − ∈ con } is the pseudocomplement of a + . This is a complement if ( a + , ∼ a + ) ∈ tot. Pseudocomplementation of elements of L − is defined similarly. Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 10 / 18

  19. Pseudocomplements Let L = ( L + , L − con , tot) be a d-frame. Definition For a + ∈ L + , the element ∼ a + := � { x − ∈ L − : a + x − ∈ con } is the pseudocomplement of a + . This is a complement if ( a + , ∼ a + ) ∈ tot. Pseudocomplementation of elements of L − is defined similarly. Definition L is Boolean if every element from L + and L − is complemented. Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 10 / 18

  20. Recall: monotopological sublocales For a frame L the following are interdefinable: Extremal epimorphisms (in Frm) from L . Frame surjections from L . Congruences on L . Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 11 / 18

  21. Recall: monotopological sublocales For a frame L the following are interdefinable: Extremal epimorphisms (in Frm) from L . Frame surjections from L . Congruences on L . Given any relation R on L we can compute the smallest congruence containing it. This gives a quotient q R : L ։ L / R . Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 11 / 18

  22. Bitopological sublocales Let L = ( L + , L − , con , tot) be a d-frame. Definition Let ( C + , C − ) be a pair of congruences where C ± is on L ± . Consider the quotient map q C : L + × L − ։ ( L + / C + ) × ( L − / C − ). Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 12 / 18

  23. Bitopological sublocales Let L = ( L + , L − , con , tot) be a d-frame. Definition Let ( C + , C − ) be a pair of congruences where C ± is on L ± . Consider the quotient map q C : L + × L − ։ ( L + / C + ) × ( L − / C − ). The pair ( C + , C − ) is called reasonable if the structure ( L + / C + , L − / C − , q C [con] , q C [tot]) is a d-frame. Anna Laura Suarez (University of Birmingham) Bitopological sublocales September 28, 2018 12 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend