static characteristics 4
play

Static characteristics - 4 VTC I Dn in = 2.5 in = 0 V V PMOS V - PowerPoint PPT Presentation

Static characteristics - 4 VTC I Dn in = 2.5 in = 0 V V PMOS V NMOS DD - V GSp 2 0.5 - + V DSp 1.5 1 + V in V out I Dp in = 1.5 V in = 1 V 1.5 1 I Dn in = 2 V V in = 0.5 in = 2.5 V in = 0 V V out V out NMOS off PMOS res


  1. Static characteristics - 4 VTC I Dn in = 2.5 in = 0 V V PMOS V NMOS DD - V GSp 2 0.5 - + V DSp 1.5 1 + V in V out I Dp in = 1.5 V in = 1 V 1.5 1 I Dn in = 2 V V in = 0.5 in = 2.5 V in = 0 V V out V out NMOS off PMOS res 2.5 NMOS sat PMOS res 2 NMOS sat 1.5 PMOS sat 1 NMOS res PMOS sat 0.5 NMOS res PMOS off V 0.5 1 1.5 2 2.5 in EEL7312 – INE5442 1 Digital Integrated Circuits Source: Rabaey

  2. Static characteristics - 5 Short-circuit current I Dn in = 2.5 in = 0 V V PMOS V NMOS DD - V GSp 2 0.5 - + V DSp 1.5 1 + V in V out I Dp in = 1.5 V in = 1 V 1.5 1 I Dn in = 2 V V in = 0.5 in = 2.5 V in = 0 V V out 2.5 IDD 2 1.5 1 0.5 V in 2 1.5 0.5 1 2.5 EEL7312 – INE5442 2 Source: Rabaey Digital Integrated Circuits

  3. Static characteristics - 6 Switching threshold - 1 V DD - V GSp - + V DSp + V in V out I Dp I Dn EEL7312 – INE5442 3 Source: Weste & Harris Digital Integrated Circuits

  4. Static characteristics - 7 Switching threshold - 2 V DD Experimental determination of V M : - V out short-circuit between input and output V GSp - + ⎛ ⎞ ⎛ ⎞ V DSp k W k W ( ) ( ) ( ) − − = 2 + λ ≅ 2 I n ⎜ ⎟ V V n ⎜ ⎟ V V 1 V Dn GSn Tn M Tn ⎝ ⎠ n DSn ⎝ ⎠ + 2 L 2 L V in V out n n I Dp ( ) ⎞ ) ( ) ⎞ ⎛ ( ⎛ k k W W 2 2 − − = + λ ≅ − p p I ⎜ ⎟ V V ⎜ ⎟ V V V 1 V Dp GSp Tp M Tp I Dn ⎝ ⎠ p DSp ⎝ ⎠ DD 2 2 L L p p λ << V 1 Usually V in DS V M ( ) W L / + k V V r V r = p p = → = + r Tn Tp DD ( ) I I V ; + + k W L / Dn Dp M 1 r 1 r n n Example: V DD =2.5 V, V Tp =-0.4 V, V Tn =0.43 V. What is V M for r= 0.5, 1.0, and 1.5? Answer: V M =0.98, 1.26, and 1.43 V, respectively. EEL7312 – INE5442 4 Source: Weste & Harris Digital Integrated Circuits

  5. Static characteristics - 8 Noise margins - 1 V DD - V GSp - + V DSp + V in V out I Dp I Dn EEL7312 – INE5442 5 Source: Weste & Harris Digital Integrated Circuits

  6. Static characteristics - 9 Noise margins - 2 Approximate calculation of V IL and V IH V DD V out - V GSp - + V OH V DSp + V in V out I Dp I Dn V M V in V OL V IL V IH For regeneration -g>1, g is the gain in transition region EEL7312 – INE5442 6 Source: Rabaey Digital Integrated Circuits

  7. Static characteristics - 10 Scaling the supply voltage 2.5 0.2 VDD - V GSp 2 - 0.15 + V DSp 1.5 + V out (V) V Vin V out (V) I Dp out 0.1 1 I Dn 0.05 0.5 0 0 0 0.05 0.1 0.15 0.2 0 0.5 1 1.5 2 2.5 V in (V) V in (V) Effects of supply voltage reduction: • Energy dissipation decreases but gate delay increases • dc characteristic becomes more sensitive to variations in device parameters • Signal swing reduces making the design more sensitive to external noise sources that do not scale EEL7312 – INE5442 7 Source: Rabaey Digital Integrated Circuits

  8. Static characteristics -11 Impact of Process Variations 2.5 “Good” PMOS 2 “Bad” NMOS 1.5 (V) Nominal out V Good NMOS 1 Bad PMOS 0.5 0 0 0.5 1 1.5 2 2.5 V in (V) W ′ β = Notes: k L k’ n ≈ 2 to 3 k’ p 1. For β n = β p and V Tp =-V Tn , V M =V DD /2 2. Source: Rabaey EEL7312 – INE5442 8 Source: Uyemura Digital Integrated Circuits

  9. Dynamic operation - 1 V = 5 V DD M P High-to-low output transition v v = 5 V v (0+) = 5V v O I I O in a CMOS inverter M M C C N N (a) (b) vI v O + 5V + 5V 0 V 0 V t t 0 0 C: load capacitance + interconnect capacitance + capacitances associated with the inverter transistors Source: Jaeger EEL7312 – INE5442 9 Digital Integrated Circuits

  10. Dynamic operation - 2 V = 5 V DD V = 5 V DD M M P P v v (0+) = 0V v O I Low-to- high output O transition in a CMOS inverter V = 0 V I M C N C (a) (b) vI v O + 5V + 5V t 0 V 0 V t 0 0 C: load capacitance + interconnect capacitance + capacitances associated with the inverter transistors EEL7312 – INE5442 10 Source: Jaeger Digital Integrated Circuits

  11. Dynamic operation - 3 t PHL t PLH EEL7312 – INE5442 11 Source: Uyemura Digital Integrated Circuits

  12. Propagation Dynamic operation - 4 delay - 1 V DD V GS = V DD ID(A) V GSn =V DD V out I D I C + 0 DS (V) V DD /2 V V DD V DSn __ dV t V / 2 = = − PHL DD dV CV /2 out I I ∫ ∫ C = − → = out DD dt C t D C dt PHL I I D Dav 0 V DD = → = 0 t V V V out DD DD 1 ( ) ∫ = = → = I I V dV t t V V /2 Dav D DS DS V /2 PHL out DD DD V / 2 DD EEL7312 – INE5442 12 Digital Integrated Circuits

  13. Propagation Dynamic operation - 5 delay - 2 V DD V GS = V DD ID(A) CV /2 = DD t PHL I Dav V 1 DD ( ) ∫ = I I V dV Approach 1 Approach 1 Dav D DS DS V /2 DD V / 2 DD V out 0 V DD /2 DS (V) V V DD C I av ⎛ ⎞ k W ( ) − − ≅ 2 > I n ⎜ ⎟ V V V V for V D GS Tn DS GS Tn ⎝ ⎠ 2 L n ⎛ ⎞ W ( ) − − ≅ ⎡ − ⎤ ≤ 2 I ⎜ ⎟ ⎣ V V V V k V V /2 for V ⎦ D n GS Tn DS DS DS GS Tn ⎝ ⎠ L n V in = V DD ⎛ ⎞ k W ( ) 2 and that − ≅ = >> Let us assume that I n ⎜ ⎟ V V V I V Dav Dsat DD Tn DD Tn ⎝ ⎠ 2 L n C V /2 CV /2 C = ≈ ≈ In this case we have DD DD t ; t ⎛ ⎞ ⎛ ⎞ PHL PHL k W W ( ) I − 2 n ⎜ ⎟ V V ⎜ ⎟ V Dav k D D Tn DD ⎝ ⎠ n ⎝ ⎠ 2 L L n n Source: Rabaey EEL7312 – INE5442 13 Digital Integrated Circuits

  14. Propagation Dynamic operation - 6 delay - 3 V DD ⎛ ⎞ ( ) k 2 and W + ≅ = >> − p I I ⎜ ⎟ V V that V V Dav Dsat DD Tp DD Tp ⎝ ⎠ 2 L Approach 1 Approach 1 p C V /2 CV /2 C I av = ≈ ≈ DD DD t ; t ⎞ ⎛ ⎞ ⎛ PLH ( ) PLH k W W I + 2 p ⎜ ⎟ V Dav ⎜ ⎟ V V k DD D D Tp p ⎝ ⎠ ⎝ ⎠ 2 L L n p + V t t out = PLH PHL t P C 2 C ≈ t ⎛ ⎞ PHL W ⎜ ⎟ V k DD n ⎝ ⎠ L Comments: n • k n ≈ 2-3 k p , k n,p = μ n,p ·C ox • Increasing V DD reduces t p but power goes up V in = V DD • t PLH can be ≈ t PHL by making (W/L) p ≈ 2-3(W/L) n BUT C is dependent on transistor dimensions • C includes load (fan-out), wire, inverter “self- capacitance” • C is non linear Source: Rabaey EEL7312 – INE5442 14 Digital Integrated Circuits

  15. Propagation Dynamic operation - 7 delay - 4 Source: Rabaey EEL7312 – INE5442 15 Digital Integrated Circuits

  16. Propagation Dynamic operation - 8 delay - 5 What’s R on ? V DD V GS = V DD ID(A) t pHL = f(R on .C L ) Approach 2 Approach 2 = 0.69 R on C L V out R − 1 V out ln(0.5) o C L 0 DS (V) 1 V DD V DD /2 V V DD R − R on 1 mid Approach by Uyemura Uyemura Approach by 0.5 0.36 ⎛ ⎞ dI W ( ) − = = − V in = V DD 1 D ⎜ ⎟ R k V V on n ⎝ ⎠ DD Tn t dV L R on C L = DS V n 0 DS Modeling capacitor discharge Approach by Rabaey Approach by Rabaey as in an RC circuit! 1 ( ) ≡ + R R R C on 0 mid ≈ 2 t ⎛ ⎞ PHL W ⎜ ⎟ V k Source: Rabaey EEL7312 – INE5442 16 DD n ⎝ ⎠ L Digital Integrated Circuits n

  17. Propagation Dynamic operation - 9 delay - 6 V DD Approach by Uyemura Uyemura Approach by ⎛ ⎞ ( ) dI W − = = − 1 D ⎜ ⎟ + R k V V ( ) on n p , ( ) n p ( ) DD Tn p ( ) ⎝ ⎠ dV L = DS V n p ( ) 0 DS t pHL = 0.69 R on,n C L V out t pLH = 0.69 R on,p C L C L R on ⎡ ⎤ ⎢ ⎥ + ⋅ t t 0.69 C 1 1 ⎢ ⎥ = = + PHL PLH L t ⎢ ⎛ ⎞ ⎛ ⎞ ⎥ P ( ) W W V in = V DD 2 2 ( ) − ⎜ ⎟ ⎜ ⎟ + k V V k V V ⎢ ⎥ n ⎝ ⎠ DD Tn p ⎝ ⎠ DD Tp ⎣ L L ⎦ n p ⋅ 0.69 C 1 1 ≈ + L t [ ] ⎛ ⎞ ⎛ ⎞ P W W 2 V ⎜ ⎟ ⎜ ⎟ DD k k n p ⎝ ⎠ ⎝ ⎠ L L n p Source: Uyemura EEL7312 – INE5442 17 Digital Integrated Circuits

  18. Dynamic operation - 10 Experimental setup S 1 2 + G B 1 VDD = 5.0 V - 3 D + B G CL 0 VPULSE S - 0 EEL7312 – INE5442 18 Digital Integrated Circuits

  19. Dynamic operation - 11 Inverter Propagation Delay * this is the Propagationdelay.cir file * PMOS transistor description MP 3 2 1 1 modelp W=2u L=1u .model modelp pmos (level=1 VT0=-0.65 TOX=7.5n KP=60u lambda=0.0) * NMOS transistor description MN 3 2 0 0 modeln W=2u L=1u .model modeln nmos (level=1 VT0=0.5 TOX=7.5n KP=150u lambda=0.0) * dc source vDD 1 0 dc 5.0 *load capacitance CL 3 0 0.01p *signal source v0 2 0 dc 0 pulse 0 5 0 1ps 1ps 200ps 400ps .end EEL7312 – INE5442 19 Digital Integrated Circuits

  20. Dynamic operation - 12 SpiceOpus (c) 6 -> source Propagationdelay1.cir SpiceOpus (c) 7 -> tran 1ps 500ps SpiceOpus (c) 8 -> setplot new New plot Current tran2 Inverter Propagation Delay (Transient Analysis) tran1 Inverter Propagation Delay (Transient Analysis) const Constant values (constants) SpiceOpus (c) 9 -> setplot tran2 SpiceOpus (c) 10 -> plot v(2) v(3) xlabel t[s] ylabel 'Input, Output [V]' EEL7312 – INE5442 20 Digital Integrated Circuits

  21. 21 Why? Digital Integrated Circuits EEL7312 – INE5442 tPHL ≈ 2.5·tPLH Dynamic operation - 12 Why?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend