standard accretion disks driven by mri stress
play

Standard Accretion Disks Driven by MRI Stress comparison with the - PowerPoint PPT Presentation

Standard Accretion Disks Driven by MRI Stress comparison with the -viscosity model Shigenobu Hirose (Institute for Research on Earth Evolution, JAMSTEC) collaboration with Omer Blaes (UCSB) and Julian Krolik (JHU) 2009/06/02


  1. Standard Accretion Disks Driven by MRI Stress — comparison with the α -viscosity model — Shigenobu Hirose (Institute for Research on Earth Evolution, JAMSTEC) collaboration with Omer Blaes (UCSB) and Julian Krolik (JHU) 2009/06/02 Workshop on MRI in Protoplanetary Disks Center for Planetary Science, Kobe University

  2. Standard Accretion Disks (Shakura & Sunyaev 1973) definition ◮ optically thick ◮ geometrically thin: H ≪ R (nearly Keplerian: v sound ≪ R Ω K ) ◮ vertical hydrostatic balance ◮ local thermal balance: Q + diss (r) = Q − rad (r) z vertical M radial H r R

  3. Timescales in Standard Accretion Disks local structure ◮ dynamical time: t dynamical ≡ H/v sound ◮ thermal time: t thermal ≡ E thermal /Q ± global structure ◮ inflow time: t inflow ≡ R/v r sharp difference in the timescales t orbital ∼ t dynamical < t thermal ≪ t inflow

  4. Basic Equations of the α Model (Shakura & Sunyaev 1973) local structure (one zone approximation) H = 2 P c hydrostatic balance ΣΩ 2 K 4 T rφ Ω K = 2 acT 4 − 3 c thermal balance 3 κ Σ P c = a c + Σ k B T c 3 T 4 equation of state 2 µH T rφ = − 2 HαP c α prescription Σ = constant t dynamical , t thermal ≪ t inflow

  5. Basic Equations of the α Model (Shakura & Sunyaev 1973) (continued) local solution H = H( Σ , Ω K , α) P c = P c ( Σ , Ω K , α) T c = T c ( Σ , Ω K , α) T rφ = T rφ ( Σ , Ω K , α) global structure ∂ Σ ∂t + 1 ∂ ∂r (r Σ v r ) = 0 mass conservation r Σ v r Ω K r 2 = − 2 ∂ ( ) r 2 T rφ angular momentum conservation ∂r

  6. Thermal Stability of the α Model (Shakura & Sunyaev 1976) equation for δT c ( ≡ T c − T c | Q + = Q − ) ( � � ) ∂ log Q + − ∂ log Q − ∂δT c � � � � ∝ δT c � � ∂t ∂ log T c ∂ log T c � � Σ Σ note: Σ is assumed to be constant since t thermal ( ≪ t inflow ) . log Q + radiation dominated log Q − unstable ∼ T 8 log Q c ∼ T 4 c ∼ T c gas dominated stable log T c

  7. Inflow Stability of the α Model (Lightman & Eardley 1974) diffusion equation for δ Σ ( ≡ Σ − Σ steady state ) � ∂δ Σ ∝ ∂ log T rφ � ∂δ Σ � � ∂t ∂ log Σ ∂r 2 � Q + = Q − note: Q + = Q − is assumed since t inflow ( ≫ t thermal ) . ∼ Σ − 1 radiation dominated unstable log T r φ gas dominated ∼ Σ 5 / 3 stable log Σ

  8. Outline of This Work modern view of stress in accretion disks ◮ MHD turbulence driven by magneto-rotational instability (MRI) modern model of standard accretion disks ◮ vertical structure with local dissipation of turbulence and radiative transport ◮ 3D radiation MHD simulations in a stratified local shearing box ◮ local equilibrium solution in an averaged sense H = H( Σ , Ω K ) P c = P c ( Σ , Ω K ) T c = T c ( Σ , Ω K ) T rφ = T rφ ( Σ , Ω K ) ⇐ thermal equilibrium curve

  9. Related Studies (stratified local shearing box simulations) ◮ Brandenburg et al.(1995) ◮ Stone et al.(1996) ◮ Miller & Stone (2000) ◮ Turner (2004) ◮ Hirose et al. (2006) ◮ Krolik et al. (2007) ◮ Blaes et al. (2007) ◮ Johansen & Levin (2008) ◮ Suzuki & Inutsuka (2009) ◮ Hirose et al. (2009) ◮ ...

  10. Basic Equations radiation MHD equations with FLD approximation ∂ρ ∂t + ∇ · (ρ v ) = 0 κ R 4 π ( ∇ × B ) × B + ( ¯ ∂(ρ v ) 1 ff + κ es )ρ + ∇ · (ρ vv ) = −∇ (p + q) + F + f shearing box ∂t c ∂e ff ρ − cEκ es ρ 4 k B (T − T rad ) κ P ∂t + ∇ · (e v ) = − ( ∇ · v )(p + q) − ( 4 πB − cE) ¯ m e c 2 ∂E ff ρ + cEκ es ρ 4 k B (T − T rad ) κ P ∂t + ∇ · (E v ) = −∇ v : P + ( 4 πB − cE) ¯ − ∇ · F m e c 2 ∂ B ∂t − ∇ × ( v × B ) = 0 no explicit resistivity and cλ viscosity F = − ff + κ es )ρ ∇ E κ R ( ¯ numerical method ◮ hydro part: ZEUS ◮ magnetic part: MOC+CT ◮ radiation diffusion part (implicit): multigrid SOR

  11. Simulation Setup simulation box outflow (no inflow) vertical: z ◮ stratfied shearing box ◮ Ω K = 190 s − 1 ( M/M ⊙ = 6 . 62 , r/r g = 30 ) g(z) = − Ω 2 K z initial condition 8 . 4 H ◮ gas and radiation 896 grids ◮ hydrostatic in z without B ◮ magnetic field ◮ twisted flux tube in y of β ≃ 20 periodic azimuth: y parameters 1 . 8 H ◮ surface density Σ 96 grids ◮ initial guess of Q + (, or thermal radial: x shearing periodic energy content) � ⇒ 0 . 45 H 48 grids gas/radiation-dominated

  12. Parameter Space 10 7 Ω K = 190 s − 1 (fixed) ∂ T r φ < 0 0519b 0211b ∂ Σ 0520a 1126b T eff (K) 1112a 0320a 090304a 10 6 10 4 10 5 10 6 Σ (g cm − 2 ) Fig. 2.— Time averaged effective temperature of the radiation leaving each vertical face of the box, as a function of surface mass density for each simulation. From right to left, the solid curves show the predictions of alpha disk models with α = 0 . 01, 0.02, and 0.03, respectively. (See the Appendix for the equations used to define these alpha parameters.)

  13. Radiation-dominated Disk Solution ◮ parameters ◮ Σ = 1 . 1 × 10 5 gcm − 2 ◮ guessed Q + = 9 . 4 × 10 21 ergcm − 2 s − 1 5 F (10 22 ergs cm ! 2 s ! 1 ) dissipation 4 radiative cooling 3 2 1 0 10 22 radiation E (ergs cm ! 2 ) gas 10 21 magnetic 10 20 10 19 0 100 200 300 400 500 600 t (orbits) ../mov/emag.mov ◮ radiation-dominated: E rad ∼ 20 E gas ◮ stable for 600 t orbit ∼ 40 t thermal ◮ time variations (quasi-steady state) ◮ MHD turbulence driven by MRI ◮ magnetic buoyancy (Parker instability) ◮ vertical oscillation (epicyclic mode, breathing mode)

  14. Local Structure: Hydrostatic Balance t = 200 t orbit 3 (magnetic Ω 2 K z photosphere scattering tention) 2 acceleration (10 11 cm s ! 2 ) total acceleration 1 gas pressure 0 Lorentz force radiation ! 1 pressure ! 2 (magnetic pressure) ! 3 ! 4 ! 2 0 2 4 z / H ◮ | z | < 2 H : radiation pressure ../mov/lined.mov ◮ | z | > 2 H : magnetic pressure (+ magnetic tention) ◮ magnetic field is supplied to the upper (subphotospheric) layers by magnetic buoyancy (Parker instability)

  15. Local Structure: Thermal Balance 6 d dz < (E + e)v z + F z > c Ω 2 dF/dz (10 15 ergs cm ! 3 s ! 1 ) 4 < q + > − < P : ∇ v > K κ d < F z > dz 2 0 d < Ev z > dz ! 4 ! 2 0 2 4 z / H < q + > − < P : ∇ v > = d dz < (E + e)v z + F z > ../mov/diss.mov ◮ dissipation: extended with double peaks ◮ radiation diffusion: d < F z > /dz ◮ ≃ c Ω 2 K /κ where radiation pressure competes the gravity ( | z | < H ) ◮ radiation advection: d < Ev z > /dz ◮ transports the excess energy ◮ associated with vertical oscillation, not buoyancy

  16. Thermal Stability of MRI Disks thermal instability in the α model  4 T rφ (t) Ω K − 2 acT 4 d E (t) = − 3 c (t)   √ d E (t) = α Ω c Ω  dt 3 κ Σ √ 4 E (t) − E (t) dt κ 3 Σ    T rφ (t) = − αP(t) T rφ synchronized with P ◮ E B – E relation in the simulation (in place of T rφ – P relation) E B ∼ E 0 . 71 E B (t) ∼ E (t + t thermal ) 1.0 cross correlation with E B ∼ t thermal 0.8 cross correlation Magnetic Energy E log E B 0.6 0.4 1 0.2 0.0 ! 40 ! 20 0 20 40 100 lag (orbits) Radiation Energy log E time lag (orbits)

  17. Thermal Stability of MRI Disks (continued) a toy model that allows a time lag between E B and E  d E (t) = E B (t) E (t)  −  t cool ( E (t 0 )) ( E (t)/ E (t 0 )) s   dt t diss   instability criterion ( E (t) ( 1 − s) < n ) n  d E B (t) = R(t) E B (t 0 ) − E B (t)      dt t grow E (t 0 ) t diss ◮ thermally stable solution: ( 1 − s) = 1 , n = 0 E B ∼ E 1 − s E 1.00 Normalized Magnetic Energy log E B Energy 1 0.10 E B 0.01 0 10 20 30 40 1 Cooling Times Normalized Radiation Energy t thermal log E

  18. Thermal Equilibrium Curve 10 7 Ω K = 190 s − 1 (fixed) ∂ T r φ < 0 0519b 0211b ∂ Σ 0520a 1126b T eff (K) 1112a 0320a 090304a 10 6 10 4 10 5 10 6 Σ (g cm − 2 ) Fig. 2.— Time averaged effective temperature of the radiation leaving each vertical face of the box, as a function of surface mass density for each simulation. From right to left, the solid curves show the predictions of alpha disk models with α = 0 . 01, 0.02, and 0.03, respectively. (See the Appendix for the equations used to define these alpha parameters.)

  19. Summary Comparison between the α disks and MRI disks α disks MRI disks hydrostatic thermal thermal magnetic a) pressure energy radiation diffusion radiation diffusion radiation advection b) transport yes c) stress–pressure yes correlation rad: stable d) thermal rad: unstable stability gas: stable gas: stable a) important in the upper subphotospheric layers b) important in the radiation dominated regime c) on timescales longer than t thermal d) – time lag between stress and pressureis necessary – intrinsic fluctuation of turbulence is longer than t cool

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend