sr optical lattice clock hyperpolarizability effects and
play

Sr optical lattice clock: hyperpolarizability effects and - PowerPoint PPT Presentation

LNE-S YRTE S ystmes de Rfrence Temps-Espace Sr optical lattice clock: hyperpolarizability effects and preliminary accuracy evaluation A. Brusch, R. Le Targat, X. Baillard, M. Fouch, O. Tcherbakoff, G.D. Rovera and P.Lemonde LNE-S


  1. LNE-S YRTE S ystèmes de Référence Temps-Espace Sr optical lattice clock: hyperpolarizability effects and preliminary accuracy evaluation A. Brusch, R. Le Targat, X. Baillard, M. Fouché, O. Tcherbakoff, G.D. Rovera and P.Lemonde LNE-S YRTE S ystèmes de Référence Temps-Espace

  2. 87 Sr 87 Sr Optical Optical lattice clock � Optical lattice clock with atoms confined in an optical lattice � Expected ultimate fractional accuracy: 10 -18 � Lattice @ “magic wavelength” => cancellation of first order differential light shift 3 S 1 Katori et al. PRL 91, 173005 (2003) 1 P 1 light shift 3 D 1 679 nm 813 461 679 2560 461 nm wavelength Γ = 32 MHz (nm) 2,56 µm 3 P 0 698 nm Clock transition 1 S 0 Γ = 1 mHz 3 P 0 1 S 0 LNE-S YRTE S ystèmes de Référence Temps-Espace

  3. Differential light shift light shift cancellation cancellation ? ? Differential � U 0 =10 E r (36 kHz) is enough to cancel motional frequency shift P. Lemonde, P. Wolf, Phys. Rev. A, 72 033409 (2005) Accuracy of 10 -18 � Control at a level of 10 -8 x Light shift � Neutral atoms in an optical lattice : � At the magic wavelength, the first order term cancels = > Scale as E 4 α U 0 � Higher order terms : Hyperpolarizability 2 ⇒ Feasibility is conditioned by the magnitude of higher order effects LNE-S YRTE S ystèmes de Référence Temps-Espace

  4. Hyperpolarizability effects effects on on the the clock clock frequency frequency Hyperpolarizability � Theoretical prediction of -2 µHz/E r 2 , λ m = 813,428 nm @ the theoretical magic wavelength: 800 nm 5s7p 1 P 1 H Katori, M. Takamoto, V.G. Pal’chikov, and V.D. 5s4f 3 F 2 Ovsiannikov, Phys. Rev. Lett., 91 , 173005 (2003) 2 x 813,36 nm � Second order light shift: magic wavelength 2 x 818,57 nm 5s5p 1 P 1 close to two two-photon transitions � 5s5p 3 P 0 -> 5s7p 1 P 1 fortunately forbidden: J=0 -> J=1 5s5p 3 P 0 G. Grynberg, B. Cagnac, Rep. Prog. Phys. 40, 791 (1977) � 5s5p 3 P 0 -> 5s4f 3 F 2 5s 2 1 S 0 698 nm Clock transition Need for an experimental evaluation of the effect LNE-S YRTE S ystèmes de Référence Temps-Espace

  5. Optical lattice lattice Optical Need for high peak intensity > 100 kW/ cm 2 • Laser Ti: sapph ~ 7-800 mW @ 813 nm • Linear build-up cavity R< 5 % • Finesse ~ 100 @ 6 9 8 nm • Waist 89µm Peak intensity ~ 400 kW/ cm 2 • • Linear polarization (to within ~ 10 -4 ) λ / 4 pol. • probe transmission @ 698 nm vac. Max trapping depth w indow s 1400 E R ~ 4,5 MHz ~ 200 µK LNE-S YRTE S ystèmes de Référence Temps-Espace

  6. Servo- -loop loop system system Servo 3 servos to ensure optimal stability 1. Hänsch-Couillaud 2. Intracavity power control 3. offset HC 1E-5 1E-7 RIN (1/Hz) V ref 1E-9 1E-11 1E-13 100 1000 10000 Fréquence (Hz) LNE-S YRTE S ystèmes de Référence Temps-Espace

  7. loading the dipole trap Dipole trap 3 S 1 beam 1 P 1 (w 0 = 90 µm, U 0 =200 µK) 688 nm 461 nm Blue (32 MHz) MOT Laser cooling (2 mK) λ trap 2 1 0 1 S 0 3 P 689 nm 688 nm + 689 nm : continuous loading 4-10 10 4 at/s atomic drain (w 0 = 50 µm) LNE-S YRTE S ystèmes de Référence Temps-Espace

  8. loading the dipole trap Dipole trap 3 S 1 beam 1 P 1 707 nm 679 nm 2 1 0 1 S 0 3 P 707 nm + 679 nm : repumpers (w 0 = 200 µm) LNE-S YRTE S ystèmes de Référence Temps-Espace

  9. Narrow line cooling in the dipole trap Dipole trap 3 S 1 beam 1 P 1 2 1 0 1 S 0 3 P 689 nm Γ = 7.6 kHz 689 nm : narrow line cooling LNE-S YRTE S ystèmes de Référence Temps-Espace

  10. Clock transition spectroscopy Dipole trap 3 S 1 beam 1 P 1 2 1 0 1 S 0 3 P 698 nm clock transition 698 nm laser referenced to an ultrastable cavity w 0 =200 µm LNE-S YRTE S ystèmes de Référence Temps-Espace

  11. probe Blue Dipole trap beam Fluorescence detection Detection 2 1 0 3 S 1 3 P ystèmes de Référence Temps-Espace YRTE LNE-S S 1 P 1 1 S 0

  12. Detection Dipole trap 3 S 1 beam 1 P 1 707 nm (7 MHz) 679 nm (1.75 MHz) 2 1 0 1 S 0 3 P 707 nm + 679 nm : repumpers (w 0 = 200 µm) LNE-S YRTE S ystèmes de Référence Temps-Espace

  13. probe Blue Dipole trap beam Detection 2 1 0 3 S 1 3 P ystèmes de Référence Temps-Espace YRTE LNE-S S 1 P 1 1 S 0

  14. Sideband spectrum 0.4 0.3 Transition probability 3 P 0 Excited 3 state 2 0.2 1 n z =0 0.1 1 S 0 0.0 3 Ground 2 -200 -100 0 100 200 state 1 detuning [kHz] n z =0 Longitudinal temperature given by sidebands ratio T z = 2 µK, 95 % of the atoms in |n z =0> Longitudinal sidebands frequency depends on the transverse excitation. Shape of sidebands gives the transverse temperature. T r = 10 µK LNE-S YRTE S ystèmes de Référence Temps-Espace

  15. Atomic carrier carrier resonance resonance Atomic Optical USC AOM ECL @ 698 nm Laser frequency is locked to the atomic resonance 698 nm probe : via an AOM 15 ms, 3 µW LNE-S YRTE S ystèmes de Référence Temps-Espace

  16. Measurement of the frequency shift due to the trap Measurement of the frequency shift due to the trap -Differential measurement atoms-cavity vs trapping depth repeated N times => -The cavity frequency fluctuations are filtered by a polynomial fit LNE-S YRTE S ystèmes de Référence Temps-Espace

  17. First order order light shift light shift First λ m = 813,428 (1) nm • Measurements done at different wavelengths and different depths LNE-S YRTE S ystèmes de Référence Temps-Espace

  18. 3 P 1 P Second order order light shift light shift near near the the 3 P 0 - 1 P 1 transition Second 0 - 1 transition magic 0.10 wavelength R ) 2 Quadratic shift (mHz/E 0.05 0.00 -0.05 813.32 813.36 813.40 813.44 813.48 lattice wavelength (nm) No visible effect around the 3 P 0 – 1 P 1 transition 2 at λ m ( 0,1 mHz @ 10 E r ) contribution <1 µHz/E r LNE-S YRTE S ystèmes de Référence Temps-Espace

  19. the 3 3 P - 3 3 F Second order order light shift light shift near near the P 0 F 2 transition Second 0 - 2 transition 10 1,0 13/2 5/2 9/2 7/2 11/2 Quadratic shift [Hz @ U 0 =10 E r ] r ] 2 Quadratic shift [mHz/E 5 0,5 0 0,0 -5 -0,5 818,55 818,56 818,57 818,58 lattice laser wavelength [nm] Contribution of this resonance @ λ m < 2 µHz/ E R 2 ( 0,2 mHz @ 10 E r ) LNE-S YRTE S ystèmes de Référence Temps-Espace

  20. the 3 3 P - 3 3 F Second order order light shift light shift near near the P 0 F 2 transition Second 0 - 2 transition 4000 3000 818.5670 nm 2000 Lightshift (Hz) 1000 0 818.5679 nm -1000 -2000 0,0 0,5 1,0 1,5 2,0 Potential depth (a.u.) Quadratic shift clearly visible once the first order term has been removed LNE-S YRTE S ystèmes de Référence Temps-Espace

  21. at λ λ m Hyperpolarizability effects effects at Hyperpolarizability m 2 • Hyperpolarizability shift of -4 (4) µHz/E r (-0.4(4) mHz @ 10 E r ), corresponding to a -1(1).10 -18 relative frequency shift @ 10 E r This effect will not limit the clock accuracy down to the 10 -18 level • A. Brusch et al. PRL 96 , 103003, 2006 LNE-S YRTE S ystèmes de Référence Temps-Espace

  22. Frequency chain chain Frequency � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � FO2 frequency accuracy ~ 4 10 -16 stability ~ 1.6 10 -14 τ -1/2 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � D. Chambon et al. Rev. Sci. Inst. 76 , 094704, 2005 S. Bize et al. C. R. Physique 5 , 829, 2004. � � � � � � � � � � � � � � � Sr clock-Fountain comparison 6 10 -14 τ -1/2 Frequency resolution: ~1 Hz @ 600 s LNE-S YRTE S ystèmes de Référence Temps-Espace

  23. 1st order order Zeeman Zeeman effect effect 1st Frequency shift due to residual field, asymetry in Zeeman population and depending on probe polarization 3 P 0 F=9/2 δ =-0.08 Hz/mG/m F 1 S 0 F=9/2 δ =-0.18 Hz/mG/m F Assigned uncertainty 5 Hz future improvement by bias field+state preparation LNE-S YRTE S ystèmes de Référence Temps-Espace

  24. Residual light shift light shift Residual 1 Hz uncertainty @ 400 E r (1.4 MHz). Control of the light shift at a level of 7 10 -7 LNE-S YRTE S ystèmes de Référence Temps-Espace

  25. Pulling by transverse by transverse sidebands sidebands Pulling -probe 2 w 0 =400 µm => k r ~10 -3 k -residual probe-lattice angle -wavefront distortion Line pulling < 1 Hz LNE-S YRTE S ystèmes de Référence Temps-Espace

  26. Cold collisions Cold collisions a few 10 atoms per lattice site : N 0 ~ 10 11 at/cm 3 No resolved shift: -1(1) Hz @ N 0 LNE-S YRTE S ystèmes de Référence Temps-Espace

  27. Accuracy budget budget Accuracy Correction Uncertainty Fractional Effect (Hz) (Hz) Uncertainty (10 -14 ) First order Zeeman 0 5 1.2 4.5 0.9 0.2 Lattice AC Stark shift (400 Er) 0.6 0.6 0.1 Lattice 2nd order Stark shift (400 Er) 0 1 0.2 Line pulling (transverse sidebands) 1 1 0.2 Cold collisions 2.4 <1 <0.1 BBR shift 1.2 10 -14 Total 8.5 Hz 5.3 Hz LNE-S YRTE S ystèmes de Référence Temps-Espace

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend