sparse modal estimation of 2 d nmr signals
play

Sparse modal estimation of 2-D NMR signals Souleymen Sahnoun, - PowerPoint PPT Presentation

Sparse modal estimation of 2-D NMR signals Souleymen Sahnoun, El-Hadi Djermoune and David Brie CRAN UMR 7039 - Universit e de Lorraine - CNRS ICASSP 2013 May 31 2013, Vancouver 1 Problem statement 1 2-D modal signal model 2 Simultaneous


  1. Sparse modal estimation of 2-D NMR signals Souleymen Sahnoun, El-Hadi Djermoune and David Brie CRAN UMR 7039 - Universit´ e de Lorraine - CNRS ICASSP 2013 May 31 2013, Vancouver 1

  2. Problem statement 1 2-D modal signal model 2 Simultaneous sparse approximation for modal estimation 3 Results 4 Conclusions 5 2

  3. Problem statement Modal estimation of 2-D NMR signals – 2 -D NMR spectroscopy ⇒ detection of complex chemical interactions 0.4 ⇒ study of macromolecules 0.3 – Superposition of 2 -D damped complex si- 0.2 nusoids ( 2 -D case) 0.1 fy 0 – Amplitude spectrum ⇒ superposition of −0.1 2 -D Lorentzian peaks −0.2 −0.3 – Modal estimation : determination of the −0.4 2 -D frequencies and dampings −0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 fx – TLS-Prony, MEMP, 2 -D Esprit, IMDF 3

  4. Problem statement Sparse approximation approach for modal estimation – Sparse approximations for 1 -D modal estimation [Goodwin1999, Malioutov 2005, Stoica 2011] – (Very) high resolution ⇒ (Very) large dictionary – [Sahnoun 2012] : multigrid sparse approximation + R -D extension 1 -D case : very effective approach (accuracy, computation cost) R ≥ 2 : computational burden is untractable for large signals (dictionary size) How to process large size signals ? – Same idea as TLS-Prony, MEMP – 2 -D estimation = 2 × 1 -D estimation + mode pairing 4

  5. 2-D modal signal model 2-D modal signal model Superposition of 2-D exponentially decaying sinusoids in noise F � c i a m 1 − 1 b m 2 − 1 y ( m 1 , m 2 ) = + e ( m 1 , m 2 ) i i i =1 with : – Number of sample m 1 = 1 , . . . , M 1 (1st dimension), m 2 = 1 , . . . , M 2 (2nd dimension) – Modes : a i = e − α a,i + j 2 πf a,i (1st dimension), b i = e − α b,i + j 2 πf b,i (2nd dimension) – Complex amplitudes { c i } F i =1 – Noise e ( m 1 , m 2 ) 5

  6. 2-D modal signal model Matrix form Y noise-free data matrix containing the samples y ( m 1 , m 2 ) � F F F � c i b M 2 − 1 Y = [ y 1 , y 2 , · · · , y M 2 ] = � c i a i � c i b i a i · · · � a i i i =1 i =1 i =1 ] T . Defining h i = [ c i , c i b i , · · · , c i b M 2 − 1 with a i = [1 , a i , . . . , a M 1 − 1 ] i i Y = [ a 1 · · · a F ][ h 1 · · · h F ] T = AH b Noisy data : Y = AH b + E Important remark : Y T = BH a + E T A last writing : Y = A diag ( c ) B T + E 6

  7. b b b Simultaneous sparse approximation for modal estimation Sparse approximation For each column of the data matrix y m 2 , m 2 = 1 , . . . , M 2 , Dictionnary Q a – a ( α, f ) = [1 , e ( − α + j 2 πf ) , . . . , e ( − α + j 2 πf )( M 1 − 1) ] T – q ( α, f ) = a ( α, f ) / || a ( α, f ) || 2 – Discretization of the ( α, f ) plane Sparse modal estimation x m 2 = min x � x � 0 � y m 2 − Q a x � 2 subject to 2 ≤ ǫ 7

  8. b b b b b b b b b Simultaneous sparse approximation for modal estimation Simultaneous sparse approximation Each column of the data matrix is a 1-D signal generated by the same modes but with different amplitudes ⇒ Simultaneous sparse approximation � Y − Q a X � 2 min X � X � 2 , 0 subject to f ≤ ǫ where � Y − Q a X � 2 f = � vec( Y − Q a X ) � 2 2 � � T � � � X � 2 , 0 = � X [1 , :] � 2 · · · � X [ N, :] � 2 � � � � 0 and X [ n, :] stands for the n th row of X . Algorithm : Simultaneous OMP [Tropp 2006] 8

  9. Simultaneous sparse approximation for modal estimation Multigrid dictionary High-resolution modal estimation – high resolution dictionary ⇒ prohibitive computational burden. – multi-grid scheme [Sahnoun2012] – signal dependent dictionary Q ( l ) : level l Q ( l +1) : level l + 1 Add & α remove f f 9

  10. bc b bc b b b b b b b b b b b bc bc bc Simultaneous sparse approximation for modal estimation Mode pairing ˆ Q b Simultaneous sparse approximations ⇒ ˆ Q a = [ˆ a 1 , ˆ a 2 , . . . , ˆ Y a F a ] Y T ⇒ ˆ Q b = [ˆ b 1 , ˆ b 2 , . . . , ˆ b F b ] Low dimension dictionary ˆ Q a Q = ˆ ˆ Q a ⊗ ˆ Q b . Selection of the pairs of 2-D modes ⇒ sparse approximation Qx � 2 ≤ ǫ. � y − ˆ min x � x � 0 subjet to Greedy algorithm : OMP, SBR 10

  11. Simultaneous sparse approximation for modal estimation Algorithm summary Perform the SVD of Y and take its low rank approximation 1 Apply the multi-grid algorithm combined with S-OMP on matrix Y to obtain the 2 modes a i (first dimension) Repeat step 2 using Y T to estimate the modes b i (second dimension) 3 Form the 2-D modes using the pairing procedure 4 11

  12. Results Numerical simulations Comparison with 2-D ESPRIT and TLS-Prony 0 10 Proposed 2−D ESPRIT −1 2−D TLS Prony – Signal size 30 × 30 10 CRB RMSE ( f 1 , 1 ) – 3 modes −2 10 – Initial dictionary : 40 frequency points uniformly distributed over −3 10 the interval [0 , 1[ , and 4 damping factors α ∈ { 0 , 0 . 025 , 0 . 05 , 1 } −4 10 – 30 levels of resolution −5 10 −10 0 10 20 30 SNR [dB] Accuracy similar to 2D-ESPRIT Lower computational burden than TLS-Prony ⇒ processing of large signals possible 12

  13. Results 2-D NMR signal analysis 0.25 0.2 18 18 17 5 3 8 7 0.15 – Signal size 64 × 2024 0.1 1 7 8 18 18 14 0.05 – Sub-bands decomposition f 1 0 [Djermoune 2008] −0.05 16 10 16 9 16 15 −0.1 – Same setting for Multigrid S-OMP −0.15 6 19 17 6 10 14 −0.2 −0.25 −0.2 −0.1 0 0.1 0.2 f 2 0.12 0.24 −0.02 0.1 0.22 −0.04 0.08 0.2 f 1 f 1 f 1 −0.06 0.06 0.18 −0.08 0.04 0.16 −0.1 0.02 0.14 −0.12 0 0.095 0.1 0.105 0.11 0.115 0.12 −0.185 −0.18 −0.175 −0.17 −0.165 −0.16 −0.185 −0.18 −0.175 −0.17 −0.165 −0.16 f 2 f 2 f 2 13

  14. Conclusions Conclusions – Sparse modal estimation adapted to large signals – Performances similar to 2D-ESPRIT – Computation time lower than TLS-Prony – Application to other NMR modalities – Extension to the R > 2 case 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend