w hat is ehd
play

W HAT IS EHD? Introduction EHD without cross-flow Modal - PowerPoint PPT Presentation

Introduction S TABILITY OF PLANAR SHEAR FLOW EHD without cross-flow Modal IN THE PRESENCE OF ELECTROCONVECTION Non-modal EHD with cross-flow Modal F. Martinelli 1 , M.Quadrio 1 , 2 & P .Schmid 1 Non-modal Conclusions 1 LadHyx, cole


  1. Introduction S TABILITY OF PLANAR SHEAR FLOW EHD without cross-flow Modal IN THE PRESENCE OF ELECTROCONVECTION Non-modal EHD with cross-flow Modal F. Martinelli 1 , M.Quadrio 1 , 2 & P .Schmid 1 Non-modal Conclusions 1 LadHyx, École Polytechnique (F) 2 Dip. Ing. Aerospaziale, Politecnico di Milano (I) Ottawa, July 29th, 2011

  2. O UTLINE 1 I NTRODUCTION Introduction EHD without cross-flow 2 EHD WITHOUT CROSS - FLOW Modal Non-modal Modal EHD with Non-modal cross-flow Modal Non-modal Conclusions 3 EHD WITH CROSS - FLOW Modal Non-modal 4 C ONCLUSIONS

  3. O UTLINE 1 I NTRODUCTION Introduction EHD without cross-flow 2 EHD WITHOUT CROSS - FLOW Modal Non-modal Modal EHD with Non-modal cross-flow Modal Non-modal Conclusions 3 EHD WITH CROSS - FLOW Modal Non-modal 4 C ONCLUSIONS

  4. W HAT IS EHD? Introduction EHD without cross-flow Modal Dielectric fluid Non-modal EHD with Negligible magnetic effects cross-flow Modal Charge injection at the boundary Non-modal Conclusions Fully coupled problem owing to Coulomb force

  5. W HAT IS ELECTROCONVECTION ? R EVIEW BY P.A TTEN , IEEE T RANS ., 1996 collector Introduction EHD without cross-flow Φ Modal Non-modal 0 y , v EHD with cross-flow ? Modal Non-modal ? Conclusions x , u liquid with z , w charged particles injector Planar indefinite geometry (periodic box) Unipolar autonomous injection "Analogous" to Rayleigh-Bénard thermal convection

  6. W HAT IS KNOWN ABOUT ELECTROCONVECTION ? R ESULTS FOR LINEAR STABILITY DATE BACK TO ’70-’80 no cross-flow cross-flow Introduction EHD without cross-flow asymptotic Modal ? Non-modal stability EHD with cross-flow Modal Non-modal Conclusions non-modal ? ? stability

  7. E QUATIONS T WO - WAY COUPLING BETWEEN KINETIC AND ELECTRIC FIELD ∇ 2 Φ = − q ε Introduction EHD without cross-flow Modal Non-modal EHD with cross-flow Modal Non-modal Conclusions Quasi-electrostatic limit of Maxwell equations

  8. E QUATIONS T WO - WAY COUPLING BETWEEN KINETIC AND ELECTRIC FIELD ∇ 2 Φ = − q ε Introduction EHD without ∂ q cross-flow ∂ t + ∇ · ( q V + qK E − D ∇ q ) = 0 Modal Non-modal EHD with cross-flow Modal Non-modal Conclusions Conservation of charge density q

  9. E QUATIONS T WO - WAY COUPLING BETWEEN KINETIC AND ELECTRIC FIELD ∇ 2 Φ = − q ε Introduction EHD without ∂ q cross-flow ∂ t + ∇ · ( q V + qK E − D ∇ q ) = 0 Modal Non-modal EHD with cross-flow ∂ V ∂ t +( V · ∇ ) V = − 1 ρ ∇ P + ν ∇ 2 V + F e Modal Non-modal Conclusions Electric force is F e = q E (no dielectric force since ε is uniform)

  10. E QUATIONS T WO - WAY COUPLING BETWEEN KINETIC AND ELECTRIC FIELD ∇ 2 Φ = − q ε Introduction EHD without ∂ q cross-flow ∂ t + ∇ · ( q V + qK E − D ∇ q ) = 0 Modal Non-modal EHD with cross-flow ∂ V ∂ t +( V · ∇ ) V = − 1 ρ ∇ P + ν ∇ 2 V + F e Modal Non-modal Conclusions ∇ · V = 0 Incompressibility

  11. D IMENSIONLESS PARAMETERS Introduction Reference length, potential and velocity are h , Φ 0 and EHD without K Φ 0 / h cross-flow Modal Non-modal Taylor number T (forcing par., fluid properties + Φ 0 ) EHD with cross-flow Ionic mobility M (fluid properties) Modal Non-modal Charge diffusivity Fe (fluid properties + Φ 0 ) Conclusions Moreover: Charge injection coefficient C (boundary condition only) Reynolds number Re (in base flow)

  12. F ORMULATION , NUMERICS Introduction EHD without cross-flow Modal v - η - Φ formulation Non-modal EHD with Fourier transform in x , z directions cross-flow Modal Small perturbations, linearization Non-modal Conclusions y discretization with N Chebyshev polynomials

  13. O UTLINE 1 I NTRODUCTION Introduction EHD without cross-flow 2 EHD WITHOUT CROSS - FLOW Modal Non-modal Modal EHD with Non-modal cross-flow Modal Non-modal Conclusions 3 EHD WITH CROSS - FLOW Modal Non-modal 4 C ONCLUSIONS

  14. S TATE OF THE ART P.A TTEN 1996 Introduction EHD without cross-flow Modal Charge diffusion assumed to be negligible, Fe → ∞ Non-modal EHD with Instability for κ ≈ 2 . 5 and T = T c ≈ 161 cross-flow Modal Discrepancy between numerical T c and experimental Non-modal Conclusions T c ≈ 100

  15. N EUTRAL CURVE D IFFUSION MATTERS ! Neutral curves. N=250, M=100, C=50 3 2.9 Introduction EHD without 2.8 cross-flow Modal 2.7 Non-modal EHD with 2.6 cross-flow Modal Non-modal 2.5 κ Conclusions 2.4 Fe=10 4 2.3 Fe=10 5 2.2 Fe=10 6 2.1 Fe=10 7 2 155 156 157 158 159 160 161 162 T

  16. "O PTIMAL " Fe E XPLAINS DIFFERENCE BETWEEN EXPERIMENTAL AND NUMERICAL T c ? κ =2.5 Optimal charge diffusivity. N=100, M=100, C=50, 1000 900 Introduction EHD without 800 cross-flow Modal 700 Non-modal EHD with 600 cross-flow Modal Non-modal Fe 500 Conclusions 400 300 200 100 100 110 120 130 140 150 T c

  17. D EFINITION OF ENERGY Introduction Total energy of the system split into mechanical and EHD without cross-flow electric contributions Modal Non-modal E = E m + E e = 1 2 ( u 2 + v 2 + w 2 )+ 1 EHD with 2 ε E · E cross-flow Modal Non-modal Transient growth function defined as Conclusions � x ( t ) 2 � E G ( t ) = max E ( t ) E ( 0 ) = max � x 2 x 0 � = 0 0 � E

  18. M AP OF G max M ILD TRANSIENT GROWTH G max curves for Fe=200, N=150, M=10, C=50 3 5 Introduction 4.5 EHD without cross-flow 4 Modal Non-modal 2.5 EHD with 3.5 cross-flow Modal Non-modal 3 κ Conclusions 2.5 2 2 1.5 1.5 1 20 40 60 80 100 120 T

  19. O UTLINE 1 I NTRODUCTION Introduction EHD without cross-flow 2 EHD WITHOUT CROSS - FLOW Modal Non-modal Modal EHD with Non-modal cross-flow Modal Non-modal Conclusions 3 EHD WITH CROSS - FLOW Modal Non-modal 4 C ONCLUSIONS

  20. N EUTRAL CURVE S QUIRE THEOREM STILL APPLIES : β = 0 Neutral curves for Fe=200,C=50 M=10, T=2000 1.4 M=10, T=4000 Introduction M=5, T=2000 EHD without 1.2 cross-flow Modal Non-modal 1 EHD with cross-flow Modal 0.8 Non-modal α Conclusions 0.6 0.4 0.2 1000 2000 3000 4000 5000 6000 7000 8000 Re

  21. M OST UNSTABLE HYDRODYNAMIC MODE Re = 7000, α = 1 Spectrum Potential Velocity −3 x 10 −50 0.4 1.5 R R I I Introduction 0.2 EHD without −100 1 cross-flow Modal 0 Non-modal EHD with cross-flow −150 0.5 −0.2 Modal imag( ω ) Non-modal Conclusions −0.4 −200 0 −0.6 −250 −0.5 −0.8 −300 −1 −1 −200 −100 0 −1 0 1 −1 0 1 real( ω ) y y

  22. M OST UNSTABLE ELECTRIC MODE Re = 100, α = 1 Spectrum Velocity Potential 10 0.4 0.04 R I Introduction 0.2 0.03 EHD without 5 cross-flow Modal 0 Non-modal 0.02 EHD with cross-flow 0 −0.2 Modal imag( ω ) R Non-modal 0.01 I Conclusions −0.4 −5 0 −0.6 −10 −0.01 −0.8 −15 −1 −0.02 −40 −20 0 −1 0 1 −1 0 1 real( ω ) y y

  23. T RANSIENT GROWTH AT β = 0 G max contours for Fe=200,M=10C=50T=2000 150 1.1 Introduction EHD without 1 cross-flow Modal 0.9 Non-modal 100 EHD with 0.8 cross-flow Modal 0.7 Non-modal α 0.6 Conclusions 0.5 50 0.4 0.3 0.2 0.1 0 1000 2000 3000 4000 5000 6000 Re

  24. O PTIMAL INPUT FOR β = 0 O RR MECHANISM . α = 1, β = 0, Re = 1000 −3 x 10 1 1.5 0.8 Introduction 1 EHD without 0.6 cross-flow Modal Non-modal 0.4 0.5 EHD with cross-flow 0.2 Modal Non-modal 0 0 y Conclusions −0.2 −0.5 −0.4 −0.6 −1 −0.8 −1 −1.5 0 1 2 3 4 5 6 x

  25. O PTIMAL OUTPUT FOR β = 0 O RR MECHANISM 1 0.025 0.8 0.02 Introduction EHD without 0.6 0.015 cross-flow Modal Non-modal 0.4 0.01 EHD with cross-flow 0.2 0.005 Modal Non-modal 0 0 y Conclusions −0.2 −0.005 −0.4 −0.01 −0.6 −0.015 −0.8 −0.02 −1 −0.025 0 1 2 3 4 5 6 x

  26. D OES EHD ENHANCE TRANSIENT GROWTH ? L OOKING AT KINETIC ENERGY ALONE , β = 0 Maximum amplification of kinetic energy − M=10, T=2000, Fe=200, C=50 1 6000 5500 0.9 Introduction EHD without 5000 0.8 cross-flow Modal 4500 Non-modal 0.7 EHD with 4000 cross-flow 0.6 Modal 3500 Non-modal α 0.5 Conclusions 3000 0.4 2500 0.3 2000 0.2 1500 0.1 1000 0 500 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Re

  27. O UTLINE 1 I NTRODUCTION Introduction EHD without cross-flow 2 EHD WITHOUT CROSS - FLOW Modal Non-modal Modal EHD with Non-modal cross-flow Modal Non-modal Conclusions 3 EHD WITH CROSS - FLOW Modal Non-modal 4 C ONCLUSIONS

  28. C ONCLUSIONS Introduction EHD without cross-flow Electroconvection (stability) revisited Modal Non-modal Role of diffusion EHD with cross-flow Non-modal effects (esp. with cross-flow) Modal Non-modal Non-linear effects? Conclusions EHD as a extremely-low-power flow control device?

  29. D IMENSIONLESS NUMBERS Reference length, potential, velocity, time and pressure are: h , Φ 0 , K Φ 0 / h , h 2 / K Φ 0 and ρ K 2 Φ 2 0 / h 2 Introduction � ε EHD without M = 1 cross-flow ρ K Modal Non-modal T = ε Φ 0 EHD with cross-flow µ K Modal Non-modal Fe = K Φ 0 Conclusions D C = q 0 h 2 ε Φ 0 K is ionic mobility, ρ and µ fluid density and dynamic viscosity, D is charge diffusivity, ε fluid (uniform) fluid permittivity.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend