some remarks on grad div stabilization of incompressible
play

Some remarks on grad-div stabilization of incompressible flow - PowerPoint PPT Presentation

Some remarks on grad-div stabilization of incompressible flow simulations Gert Lube Institute for Numerical and Applied Mathematics Georg-August-University G ottingen M. Stynes Workshop Numerical Analysis for Singularly Perturbed Problems


  1. Some remarks on grad-div stabilization of incompressible flow simulations Gert Lube Institute for Numerical and Applied Mathematics Georg-August-University G¨ ottingen M. Stynes Workshop Numerical Analysis for Singularly Perturbed Problems Dresden University of Technology, November 16-18, 2011 Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 1 / 27

  2. Outline Incompressible Navier-Stokes model 1 Numerical analysis of grad-div stabilized Oseen problem 2 Some recent result on limit case γ → ∞ 3 A (potentially) new approach to parameter design 4 Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 2 / 27

  3. Incompressible Navier-Stokes model Navier-Stokes problem Incompressible Navier-Stokes model: Find velocity u , pressure p ∂ t u − ∇ · ( 2 ν D u ) + ( u · ∇ ) u + ∇ p = f in ( 0 , T ] × Ω ∇ · u = 0 in [ 0 , T ] × Ω u | t = 0 = u 0 in Ω ⊆ R d no-slip boundary conditions u = 0 (for simplicity) deformation tensor D u = 1 2 ( ∇ u + ( ∇ u ) T ) viscosity ν (Reynolds number Re = U L ν ). Claude Louis George Gabriel Marie Henri Stokes Navier Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 4 / 27

  4. Incompressible Navier-Stokes model Finite element approximation V = [ H 1 0 (Ω)] 3 , Q = L 2 0 (Ω) := { q ∈ L 2 (Ω) : � Ω q dx = 0 } T h – admissible (possibly anisotropic) mesh Ω = ∪ K ∈ T h K V h ⊂ V , Q h ⊂ Q Conforming finite element spaces: Basic Galerkin FE method: find ( u h , p h ): [ 0 , T ] − → V h × Q h s.t. ∀ ( v h , q h ) ∈ V h × Q h ( ∂ t u h , v h ) + ( 2 ν D u h , D v h ) + b S ( u h , u h , v h ) − ( p h , ∇ · v h ) = ( f , v h ) ( q h , ∇ · u h ) = 0 with skew-symmetric convective term b S ( u , v , w ) := 1 2 [(( u · ∇ ) v , w ) − (( u · ∇ ) w , v )] Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 5 / 27

  5. Incompressible Navier-Stokes model Examples of inf-sup stable approximations Inf-sup stable velocity-pressure FE spaces V h × Q h ⊂ V × Q ( q h , ∇ · v h ) ∃ β � = β ( h ) s . t . q h ∈ Q h sup inf � q h � 0 �∇ v h � 0 ≥ β > 0 v h ∈ V h � No additional pressure stabilization required (at least for laminar flows) Taylor-Hood elements: for k ∈ N 0 (Ω)] d × [ P k ( T h ) ∩ C (Ω)] V TH × Q TH [ P k + 1 ( T h ) ∩ H 1 = or h h 0 (Ω)] d × [ Q k ( T h ) ∩ C (Ω)] , V TH × Q TH [ Q k + 1 ( T h ) ∩ H 1 = k ∈ N h h � problems with mass conservation with increasing order k Scott-Vogelius elements: on barycenter refined tetrahedral meshes T h 0 (Ω)] d × [ P disc V SV × Q SV h = [ P k + 1 ( T h ) ∩ H 1 ( T h ) ∩ L 2 0 (Ω)] , for k ≥ d − 1 h k with property ∇ · [ P k + 1 ( T h )] d ⊂ P disc ( T h ) � strong (pointwise) conservation of mass k Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 6 / 27

  6. Incompressible Navier-Stokes model Grad-div stabilized Galerkin methods Galerkin FE method with grad-div stabilization: find ( u h , p h ): [ 0 , T ] − → V h × Q h s.t. ∀ ( v h , q h ) ∈ V h × Q h ( ∂ t u h , v h ) + ( 2 ν D u h , D v h ) + b S ( u h , u h , v h ) − ( p h , ∇ · v h ) + ( q h , ∇ · u h ) +( γ ∇ · u h , ∇ · v h ) = ( f , v h ) classical augmented Lagrangian approach, see e.g. F ORTIN /G LOWINSKI [1983] also applied to Maxwell problem introduced by H UGHES /F RANCA [1986] for equal-order interpolation with γ ∼ 0 ( h ) Numerical analysis for inf-sup stable interpolation by G ELHARD ET AL . [2005] and O LSHANSKII ET AL . [2009]: Choice γ ∼ 0 ( h ) is not correct in general case ! Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 7 / 27

  7. Numerical analysis of grad-div stabilized Oseen problem Grad-div stabilized Oseen model Oseen model: For given b with ∇ · b = 0, find velocity u , pressure p C.W. Oseen − ν ∆ u + ( b · ∇ ) u + ∇ p + σ u = f in Ω ⊂ R d ∇ · u = 0 Grad-div stabilized Oseen problem: Find ( u h , p h ) ∈ V h × Q h ⊂ V × Q s.t. ∀ ( v , q ) ∈ V h × Q h : a γ ( u h , p h ; v h , q h ) := ( ν ∇ u h , ∇ v h ) + b S ( b , u h , v h ) + ( σ ∇ u h , v h ) � − ( p , ∇ · v ) + ( q , ∇ · u ) + γ K ( ∇ · u h , ∇ · v h ) K = ( f , v h ) K Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 9 / 27

  8. Numerical analysis of grad-div stabilized Oseen problem Numerical analysis of grad-div stabilized Oseen problem: M. Olshanskii, G. Lube, T. Heister, J. L¨ owe: Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations , CMAME 198 (2009), pp. 3975-3988 Well-posedness: c p � q h � 2 0 + �√ γ ∇ · v h � 2 a γ ( v h , q h ; v h , q h ) ≥ 1 b ≡ 1 � � 2 | [ v h , q h ] | 2 ν �∇ v h � 2 0 0 + ν + γ max + ν − 1 � b � 2 2 L ∞ (Ω) A-priori estimate: �� h 2 K � b � 2 � � 1 � L ∞ ( K ) | [ u − u h , p − p h ] | 2 h 2 k | u | 2 ν + γ K | p | 2 b ≤ ν + γ K + H k + 1 ( K ) + H k ( K ) K ν K ∈T h Equilibration of error terms: leads to ”dynamic” parameter version 0 ; | p | H k ( K ) � � γ K ∼ max − ν | u | H k + 1 ( K ) Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 10 / 27

  9. Numerical analysis of grad-div stabilized Oseen problem Example 1: Vortex pairs Oseen problem on Ω = ( 0 , 1 ) 2 with ν = 10 − 6 , σ = 0 and b = u pairs of vortices strong variation of mesh Reynolds number � u � ∞ , K h K ∈ [ 0 , h Re K := ν ] ν H 1 - and L 2 -errors vs. scaling parameter γ 0 of grad-div stabilization for Example 1 with σ = 0, h ≈ 1 64 Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 11 / 27

  10. Numerical analysis of grad-div stabilized Oseen problem Example 1 ”Dynamic” vs. constant parameter design H 1 - and L 2 -errors vs. scaling parameter ˜ γ 0 of ”dynamic” grad-div stabilization for Example 1 H 1 - and L 2 -errors vs. scaling constant parameter γ 0 of grad-div stabilization for Example 1 with ν = 10 − 6 , σ = 0 Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 12 / 27

  11. Numerical analysis of grad-div stabilized Oseen problem Example 2: Vortex in boundary layer B ERRONE [2001] Oseen problem on Ω = ( 0 , 1 ) 2 with b = u counter-clockwise vortex in boundary layer ν -dependent solution with �∇ u � 0 ∼ ν − 0 . 35 and � p � 0 ∼ ν − 0 . 12 . Errors in H 1 -seminorm and L 2 -norm vs. scaling parameter γ 0 of grad-div stabilization for Example 2 with ν = 10 − 4 Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 13 / 27

  12. Numerical analysis of grad-div stabilized Oseen problem Example 3: Beltrami flow E ITHIER ET AL . [1994] Time-dependent Navier-Stokes flow in Ω = ( − 1 , 1 ) 3 with ν = 10 − 6 Series of counter-rotating vortices intersecting one another at oblique angles Diagonally implicit Runge-Kutta method of 1 order 2 with time step ∆ t = 64 L 2 -error vs. t ∈ [ 0 , 1 ] without stabilization for different h (left) and with grad-div stabilization for fixed h for ν = 10 − 6 Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 14 / 27

  13. Numerical analysis of grad-div stabilized Oseen problem Example 3 (continued) L 2 (Ω) -error (as function of t ) for different values of Re = 1 ν for the Galerkin scheme, i.e. without grad-div stabilization (left) and with grad-div stabilization (right) Obvious improvement even with (time-independent) grad-div stabilization γ K = γ 0 Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 15 / 27

  14. Numerical analysis of grad-div stabilized Oseen problem Some conclusions Constant value of grad-div parameter γ gives very often improvements of mass conservation and of other relevant norms � � | p | Hk ( K ) ”Dynamic” design of γ K ∼ max 0 ; | u | Hk + 1 ( K ) − ν is not feasible | p | H k ( K ) ≥ ν | u | H k + 1 ( K ) , Grad-div stabilization is not necessary in case of e.g. in shear flows ! Poiseuille-type flow: No improvement with grad-div stabilization ! Gert Lube (University of G¨ ottingen) Some remarks on grad-div stabilization Dresden, November 16-18, 2011 16 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend