constitutive equations
play

Constitutive Equations 2 D ( v ) = v + ( v ) T S = ( e ) D ( v ) q - PowerPoint PPT Presentation

Constitutive Equations 2 D ( v ) = v + ( v ) T S = ( e ) D ( v ) q = ( e ) e Governing equations div v = 0 v t + div( v v ) = p + div ( e ) D ( v ) 2 | v | 2 ) t + div(( e + 1 2 | v | 2 ) v ) div( (


  1. Constitutive Equations 2 D ( v ) = ∇ v + ( ∇ v ) T S = ν ( e ) D ( v ) q = κ ( e ) ∇ e Governing equations div v = 0 � � v t + div( v ⊗ v ) = −∇ p + div ν ( e ) D ( v ) 2 | v | 2 ) t + div(( e + 1 2 | v | 2 ) v ) − div( κ ( e ) ∇ e ) = div( p v ) + div( ν ( e ) D ( v ) v ) ( e + 1 and e t + div( e v ) − div( κ ( e ) ∇ e ) ≥ ν ( e ) | D ( v ) | 2 Weak solution (BM, BLM, BE) vrs Suitable weak solution (BM, BLM, BE + Entropy inequality): 2D, 3D – Typeset by Foil T EX – 1

  2. Energy estimates and their consequences � � div v = 0 v t + div( v ⊗ v ) = −∇ p + div ν ( . . . ) D ( v ) e + | v | 2 e + | v | 2 � � �� � � � � t + div − div( κ ( . . . ) ∇ e ) = div( p v ) + div ν ( . . . ) D ( v ) v v 2 2 e t + div( e v ) − div( κ ( . . . ) ∇ e )( ≥ ) = ν ( . . . ) | D ( v ) | 2 e 0 + | v 0 | 2 e + | v | 2 e ∈ L ∞ ( L 1 ) v ∈ L ∞ ( L 2 ) � � � � � � • ( t, x ) dx ≤ dx = ⇒ Ω 2 Ω 2 � T 0 ν ( . . . ) | D ( v ) | 2 dx ≤ C ∇ v ∈ L 2 ( L 2 ) • = ⇒ e > C ∗ a.e. , e ∈ L m ( L m ) , ∇ ( e ) (1 − λ ) / 2 ∈ L 2 ( L 2 ) • ν ( . . . ) | D ( v ) | 2 ≥ 0 , = ⇒ p = ( − ∆) − 1 div div( v ⊗ v − ν ( . . . ) D ( v )) Equation for the pressure (Navier’s slip) v ∈ L 10 / 3 ( L 10 / 3 ) p ∈ L 5 / 3 ( L 5 / 3 ) • v ∈ L ∞ ( L 2 ) and ∇ v ∈ L 2 ( L 2 ) = ⇒ and – Typeset by Foil T EX – 2

  3. Energy estimates and their consequences � � div v = 0 v t + div( v ⊗ v ) = −∇ p + div ν ( . . . ) D ( v ) e + | v | 2 e + | v | 2 � � �� � � � � t + div − div( κ ( . . . ) ∇ e ) = div( p v ) + div ν ( . . . ) D ( v ) v v 2 2 ν ( . . . ) | D ( v ) | 2 e t + div( e v ) − div( κ ( . . . ) ∇ e ) ( ≥ ) = � ∗ � L 5 / 2 ( W 1 , 5 / 2 ) = L − 5 / 3 ( W 1 , − 5 / 3 ) • v t ∈ • e t ∈ L 1 ( W − 1 ,q ′ ) with q > 10 • Aubin-Lions lemma and its generalization: v and e precompact in L m ( L m ) for m ∈ [1 , 5 3 ) • Trace theorem and Aubin-Lions lemma: pre-compactness of v on ∂ Ω • Vitali’s theorem Two steps in the proof of existence • Stability of the system w.r.t. weakly converging sequences • Constructions of approximations (several levels), derivation of uniform estimates, weak limits - candidates for the solutions, taking limits in nonlinearities – Typeset by Foil T EX – 3

  4. Result #1 Theorem 1. ( M. Bul´ alek, ’06-’07 ) Assume that ıˇ cek, E. Feireisl , J. M´ ν 1 ≥ ν ( s ) ≥ ν 0 > 0 and κ 1 ≥ κ ( s ) ≥ κ 0 > 0 for all s ∈ R n ,div and e 0 ∈ L 1 , e 0 ≥ C ∗ > 0 a.a. in Ω . Let g ∈ L 1 (0 , T ) . Let ∂ Ω ∈ C 1 , 1 , v 0 ∈ L 2 Then for all T > 0 (and any α ∈ [0 , ∞ ) ) there exists (suitable) weak solution ( v , p ) to the system in consideration, completed by Navier’s slip boundary conditions, such that L 2 weak ) ∩ L 2 (0 , T ; W 1 , 2 � v ∈ C (0 , T ; n ,div ) tr v ∈ L 2 (0 , T ; L 2 ( ∂ Ω)) � 5 5 p ∈ L 3 (0 , T ; L 3 ) p ( t, x ) dx = g ( t ) Ω m ∈ [1 , 5 3) , n ∈ [1 , 5 e ∈ L ∞ (0 , T ; L 1 ) ∩ L m (0 , T ; L m ) ∩ L n (0 , T ; W 1 ,n ) 4) ( p + | v | 2 10 10 5 5 9 (0 , T ; L 9 ) 2 ) v ∈ L D ( v ) v ∈ L 4 ([0 , T ]; L 4 ) – Typeset by Foil T EX – 4

  5. Fluids with shear rate dependent viscosities S = ν ( | D | 2 ) D ( v ) If v = ( u ( x 2 ) , 0 , 0) , then | D ( v ) | 2 = 1 / 2 | u ′ | 2 ... shear rate. • ν ( | D | 2 ) = | D | r − 2 • ν ( | D | 2 ) = ν 0 + ν 1 | D | r − 2 1 < r < ∞ r > 2 • power-law model • Ladyzhenskaya model (65) • ν ( | D | 2 ) ց as | D | 2 ր • (Smagorinskii turbulence model: r = 3 ) • shear thinning fluid ( r < 2 ) (A) given r ∈ (1 , ∞ ) there are C 1 > 0 and C 2 > 0 such that for all symmetric matrices B , D � � ( ν ( | D | 2 ) D ∂ r − 2 r − 2 2 | B | 2 ≤ C 1 ( K + | D | 2 ) · ( B ⊗ B ) ≤ C 2 ( K + | D | 2 ) 2 | B | 2 ∂ D K can be even 0 in many cases. – Typeset by Foil T EX – 5

  6. Four approaches used in the analysis r ≥ 2 + 1 r > 2 − 1 • Higher regularity method = ⇒ regularity for 5 , but gives existence for 5 • Monotone operator theory - Test by u n − u r ≥ 2 + 1 k ∂ k v n ( v n − v ) ∈ L 1 ( Q ) ⇐ v n ⇒ O.A. Ladyzhenskaya ’65, J.L. Lions ’69 5 • L ∞ - truncation of Sobolev functions - Test by ( v n − v )(1 − min(1 , | v n − v | )) λ r > 2 − 2 k ∂ k v n ∈ L 1 ( Q ) ⇐ v n ⇒ J. Frehse , J. M´ alek, M. Steinhauer ’00, Wolf ’07 5 • W 1 , ∞ - truncation of Sobolev functions - Test by ( v n − v ) λ r ≥ 2 − 4 v n ⊗ v n ∈ L 1 ( Q ) ⇐ ⇒ Conjecture based on J. Frehse , J. M´ alek, M. Steinhauer ’03 5 L. Diening, M. R˚ uˇ ziˇ cka, J. W¨ olf ’07 – Typeset by Foil T EX – 6

  7. Lemma on Lipschitz approximations of Sobolev functions Lemma for one function : Let Ω smooth, bounded and u ∈ W 1 , 1 (Ω) . 0 Then for every λ > 0 , θ > 0 there is u θ,λ ∈ W 1 , ∞ (Ω) : 0 • � u θ,λ � ∞ ≤ θ , • �∇ u θ,λ � ∞ ≤ cλ , • { u � = u θ,λ } ⊂ Ω ∩ ( { M ( u ) > θ } ∪ { M ( |∇ u | ) > λ ) } alek, Steinhauer ) Let Ω ∈ C 0 , 1 and u n → 0 in W 1 ,r (Ω) . Lemma ( Diening, M´ 0 Denote K := sup n � u n � 1 ,r and γ n := � u n � r → 0 and µ j := 2 2 j . Set θ n := √ γ n . Then there are λ n,j ∈ [ µ j , µ j +1 ] • � u n,j � ∞ ≤ θ n and �∇ u n,j � ∞ ≤ Cλ n,j • u n,j → 0 strongly in L ∞ (Ω) • u n,j ⇀ 0 weakly in W 1 ,s 0 (Ω) s ∈ � 1 , ∞ ) Evenmore, for all n, j • �∇ u n,j χ { un,j � = un } � r ≤ c � λ n,j χ { un,j � = un } � r ≤ c γn 1 θn µ j +1 + cK 2 j/r – Typeset by Foil T EX – 7

  8. Fluids with pressure dependent viscosities S = ν ( p ) D ( v ) ν ( p ) = exp( γp ) Bridgman(31): ”The physics of high pressure” Cutler, McMickle, Webb and Schiessler(58) Johnson, Cameron(67), Johnson, Greenwood(77), Johnson, Tewaarwerk(80) Paluch et al. (99), Bendler et al. (01) elastohydrodynamics: Szeri(98) synovial fluids No global existence result. • Renardy(86), local, ( ν ( p ) → 0 as p → ∞ ) p • Gazzola(97), Gazzola, Secchi(98): local, severe restrictions – Typeset by Foil T EX – 8

  9. ∂ t v + P div( v ⊗ v ) − P div( ν ( p ) D ( v )) = 0 p = ( − ∆) − 1 div div( v ⊗ v − ν ( p ) D ( v )) F := ( − ∆) − 1 div div (a Fourier multiplier) Minimal requirement: v �→ p = p ( v ) is well defined.Let p 1 , p 2 be two solutions corresponding to v . p 1 − p 2 = F (( ν ( p 2 ) − ν ( p 1 )) D ( v )) = F ( ∂ p ν ( p 2 + θ 1 ( p 2 − p 1 )) D ( v ) ( p 2 − p 1 )) Not clear which side contains the leading operator. A very complex relation. ν ( p, | D ( v ) | 2 ) �� � ν ( p 1 , | D ( v ) | 2 ) − ν ( p 2 , | D ( v ) | 2 ) � p 1 − p 2 = −F D ( v ) = F ( ∂ p ν ( p 2 + θ 1 ( p 2 − p 1 ) , | D ( v ) | 2 ) D ( v ) ( p 2 − p 1 )) � p 1 − p 2 � q ≤ � ∂ p ν ( p 2 + θ 1 ( p 2 − p 1 ) , | D ( v ) | 2 ) D ( v ) ( p 1 − p 2 ) � q | ∂ p ν ( p, | D | 2 ) D | � p 1 − p 2 � q ≤ sup p, D ν ( p, | D | 2 ) = ln(1 + | p | + | D | ) – Typeset by Foil T EX – 9

  10. Fluids with shear rate and pressure dependent viscosities S = ν ( p, | D | 2 ) D ( v ) η 0 − η ∞ ν ( p, | D | 2 ) = ( η ∞ + 1 + δ | D | 2 − r ) exp( γ p ) r = 1 . 56 Davies and Li(94), Gwynllyw, Davies and Phillips(96) p ν ( p, | D | 2 ) = c 0 r = 1 Schaeffer(87) - instabilities in granular materials | D | r − 2 ν ( p, | D | 2 ) = ( A + (1 + exp( α p )) − q + | D | 2 ) 2 0 ≤ q ≤ 1 r − 1 2 − rA (2 − r ) / 2 α > 0 , A > 0 1 ≤ r < 2 2 α elastohydrodynamics, synovial fluids, film flows, granular materials – Typeset by Foil T EX – 10

  11. S = ν ( p, | D ( v ) | 2 ) D ( v ) Assumptions on (A1) given r ∈ (1 , 2) there are C 1 > 0 and C 2 > 0 such that for all symmetric matrices B , D and all p � � ν ( p, | D | 2 ) D ∂ r − 2 r − 2 2 | B | 2 ≤ C 1 (1 + | D | 2 ) · ( B ⊗ B ) ≤ C 2 (1 + | D | 2 ) 2 | B | 2 ∂ D (A2) for all symmetric matrices D and all p � ∂ [ ν ( p, | D | 2 ) D ] � r − 2 1 C 1 � � � ≤ γ 0 (1 + | D | 2 ) 4 ≤ γ 0 γ 0 < . � � � ∂p � C div, 2 C 1 + C 2 � – Typeset by Foil T EX – 11

  12. Examples of ν ’s fulfilling (A1) and (A2) Consider r − 2 ν i ( p, | D | 2 ) = ( µ i ( p ) + | D | 2 ) 2 i = 1 , 2 , 3 − q µ 1 ( p ) = A + (1 + α 2 p 2 ) 2 µ 2 ( p ) = A + (1 + exp( αp )) − q � A + exp( − αq P )) if p > 0 , µ 3 ( p ) = A + 1 if p ≤ 0 . with α | q | (2 − r ) ≤ r − 1 α > 0 , A > 0 , q > 0 , r ∈ (9 / 5 , 2) and 4 ν i ( · , | D | 2 ) is increasing in the first variable for any fixed D These models are pressure thickening and shear thinning which is in agreement with experimental observations. These models fulfil the assumptions (A1) – (A2) . – Typeset by Foil T EX – 12

  13. Result #2 Theorem 2. ( M. Bul´ ıˇ cek , J. M´ alek, K. R. Rajagopal ’07) Let (A1) – (A2) hold and r in (A1) satisfy � 8 � r ∈ 5 , 2 Assume that • ∂ Ω ∈ C 1 , 1 • v 0 ∈ L 2 n ,div • g ∈ L 1 (0 , T ) Then for all T > 0 (and any α ∈ (0 , 1] ) there exists at least one weak solution ( v , p ) of the system (*) completed by Navier’s slip boundary conditions such that v ∈ C (0 , T ; L 2 weak ) ∩ L r (0 , T ; W 1 ,r n ,div ) 5 r 5 r � 6 (0 , T ; L 6 ) p ∈ L and p ( t, x ) dx = g ( t ) Ω If r ∈ (9 / 5 , 2) , the existence of suitable weak solution can be established. – Typeset by Foil T EX – 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend