constitutive relations in chiral media
play

Constitutive Relations in Chiral Media Covariance and Chirality - PowerPoint PPT Presentation

Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd , 2010 Optical Activity Polarization Rotation - Observed early 19 th


  1. Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd , 2010

  2. Optical Activity Polarization Rotation - Observed early 19 th century - Independent of wave-vector orientation - Independent of linear polarization Resolved though Biisotropic Constitutive Relations - Consistent with treatment of sub-wavelength chiral objects - Constrained by Covariance Requirements

  3. Example of Chiral Object

  4. Induced Dipole Moments Direct Dependencies p = 1 � r � � ℓ � � d ℓλ m = � 2 d ℓ × I and 2 ℓ ℓ

  5. Induced Dipole Moments Direct Dependencies p = 1 � r � � ℓ � � d ℓλ m = � 2 d ℓ × I and 2 ℓ ℓ Specific Case - Solenoid ≃ 1 r × � p � 2 ˆ z � h h d h · λ h � ≃ � ı π r � m I ı | | zn π r 2 � = ˆ zn π r � h h d h · λ ℓ = ( ± )ˆ h d h · I ℓ

  6. Dipole Interdependence Inspection of Magnetic Dipole = ( ± ) n π r 2 � m z h d h · I ℓ

  7. Dipole Interdependence Inspection of Magnetic Dipole = ( ± ) n π r 2 � m z h d h · I ℓ | = ( ± ) n π r 2 � h [ d ( h I ℓ ) − h ∂ I ℓ ∂ h d h ] | h h ∂ I ℓ = ( ∓ ) n π r 2 ∂ℓ � ∂ℓ d h ∂ h | h h d h ∂λ ℓ = ( ± ) n π r 2 2 n π r � ∂ t | = ( ± ) n π r 2 2 · ∂ t ( n π r � h h d h λ ℓ )

  8. Dipole Interdependence Inspection of Magnetic Dipole = ( ± ) n π r 2 � m z h d h · I ℓ | = ( ± ) n π r 2 � h [ d ( h I ℓ ) − h ∂ I ℓ ∂ h d h ] | h h ∂ I ℓ = ( ∓ ) n π r 2 ∂ℓ � ∂ℓ d h ∂ h | h h d h ∂λ ℓ = ( ± ) n π r 2 2 n π r � ∂ t | = ( ± ) n π r 2 2 · ∂ t ( n π r � h h d h λ ℓ ) Dipole Coupling − → m = ( ± ) 2 n π r 2 ∂ t � m = ( ± ) 2 n π r 2 ˙ � � ıω� p p harmonic case

  9. Constitutive Relations Polarization Vectors � p = γ pe E · ˆ z + γ pb B · ˆ z m = γ mb ˙ z + γ me ˙ � B · ˆ E · ˆ z

  10. Constitutive Relations Polarization Vectors � � p = γ pe E · ˆ z + γ pb B · ˆ z P = ǫ o { χ e E + χ eb B } ⇒ m = γ mb ˙ z + γ me ˙ � M = − 1 � B · ˆ E · ˆ z µ o { χ b B + χ be E }

  11. Constitutive Relations Polarization Vectors � � p = γ pe E · ˆ z + γ pb B · ˆ z P = ǫ o { χ e E + χ eb B } ⇒ m = γ mb ˙ z + γ me ˙ � M = − 1 � B · ˆ E · ˆ z µ o { χ b B + χ be E } Example Cases � = ǫ E + ξ db B D with ξ db = ξ he = ξ = 1 µ B + ξ he E H

  12. Constitutive Relations Polarization Vectors � � p = γ pe E · ˆ z + γ pb B · ˆ z P = ǫ o { χ e E + χ eb B } ⇒ m = γ mb ˙ z + γ me ˙ � M = − 1 � B · ˆ E · ˆ z µ o { χ b B + χ be E } Example Cases � = ǫ E + ξ db B D with ξ db = ξ he = ξ = 1 µ B + ξ he E H General Linear Form � D = ǫ E + α B with { α, β } unrelated = 1 µ B + β E H

  13. Maxwell’s Wave Equation Source Free, Harmonic Maxwell Equations ∇ · B = 0 ∇ × E − ˙ ıω B = 0 ∇ · D = 0 ∇ × H + ˙ ıω D = 0

  14. Maxwell’s Wave Equation Source Free, Harmonic Maxwell Equations ∇ · B = 0 ∇ × E − ˙ ıω B = 0 ∇ · D = 0 ∇ × H + ˙ ıω D = 0 Use of Constitutive Equations ∇ × ( 1 µ B + β E ) = − ˙ ıω ( ǫ E + α B )

  15. Maxwell’s Wave Equation Source Free, Harmonic Maxwell Equations ∇ · B = 0 ∇ × E − ˙ ıω B = 0 ∇ · D = 0 ∇ × H + ˙ ıω D = 0 Use of Constitutive Equations ∇ × ( 1 µ B + β E ) = − ˙ ıω ( ǫ E + α B ) Curl Wave Equation ∇ × ∇ × E =˙ ıω ∇ × B

  16. Maxwell’s Wave Equation Source Free, Harmonic Maxwell Equations ∇ · B = 0 ∇ × E − ˙ ıω B = 0 ∇ · D = 0 ∇ × H + ˙ ıω D = 0 Use of Constitutive Equations ∇ × ( 1 µ B + β E ) = − ˙ ıω ( ǫ E + α B ) Curl Wave Equation ∇ × ∇ × E =˙ ıω ∇ × B ⇓ κ 2 = ω 2 ∇ 2 E + κ 2 E + δ ∇ × E = 0 → c 2 , δ = − ˙ ıωµ ( α + β )

  17. Maxwell Revisited Divergeance of D ∇ · D = ∇ · ( ǫ E + α B ) ⇓ ∇ · E = 0

  18. Maxwell Revisited Divergeance of D ∇ · D = ∇ · ( ǫ E + α B ) ⇓ ∇ · E = 0 Curl of H ıω D = ∇ × ( 1 ∇ × H + ˙ µ B + β E ) + ˙ ıω ( ǫ E + α B ) = 1 µ ∇ × B + ˙ ıωǫ E + [ β ∇ × E + ˙ ıωα B ] ⇓ ∇ × B + ˙ ıωµǫ E = − µ [ α + β ] ∇ × E

  19. Maxwell Revisited Divergeance of D ∇ · D = ∇ · ( ǫ E + α B ) ⇓ ∇ · E = 0 Curl of H ıω D = ∇ × ( 1 ∇ × H + ˙ µ B + β E ) + ˙ ıω ( ǫ E + α B ) = 1 µ ∇ × B + ˙ ıωǫ E + [ β ∇ × E + ˙ ıωα B ] ⇓ ∇ × B + ˙ ıωµǫ E = − µ [ α + β ] ∇ × E Ambiguous Representations D = ǫ E + α B µ B − α E ⇔ D = ǫ E α = − β for = 1 = 1 H H µ B

  20. Four-Vector and Tensor Notation Invariance of Charge � ρ, J } � ϕ, A � s := ← → A :=

  21. Four-Vector and Tensor Notation Invariance of Charge � ρ, J } � ϕ, A � s := ← → A := Vacuum Field Tensor F µν = ∂ µ A ν − ∂ ν A µ ← → A ν = g νσ A σ

  22. Four-Vector and Tensor Notation Invariance of Charge � ρ, J } � ϕ, A � s := ← → A := Vacuum Field Tensor F µν = ∂ µ A ν − ∂ ν A µ ← → A ν = g νσ A σ Covariant Maxwell’s Equations ∂ ν G µν = s µ ∂ [ σ F µν ] = 0 and

  23. Field Tensor Elements Vacuum Field Tensor   0 − E x − E y − E z − B y E x 0 B z   [ F µν ] =   E y − B z 0 B x     E z B y − B x 0 Material Field Tensor   0 D x D y D z − D x 0 H z − H y   [ G µν ] =   − D y − H z 0 H x     − D z − H x H y 0

  24. Field Tensor Elements Vacuum Field Tensor   0 − E x − E y − E z − B y E x 0 B z   [ F µν ] =   E y − B z 0 B x     E z B y − B x 0 Material Field Tensor   0 D x D y D z − D x 0 H z − H y   [ G µν ] =   − D y − H z 0 H x     − D z − H x H y 0 Covariant Constitutive Relation G σκ = χ σκµν F µν

  25. Constitutive Tensor Relation General Linear Medium χ σκµν F 01 F 02 F 03 F 23 F 31 F 12 − E x − E y − E z B x B y B z G 01 D x − ǫ 11 − ǫ 12 − ǫ 13 α 11 α 12 α 13 G 02 D y − ǫ 21 − ǫ 22 − ǫ 23 α 21 α 22 α 23 G 03 D z − ǫ 31 − ǫ 32 − ǫ 33 α 31 α 32 α 33 G 23 H x − β 11 − β 12 − β 13 ζ 11 ζ 12 ζ 13 G 31 H y − β 21 − β 22 − β 23 ζ 21 ζ 22 ζ 23 − β 31 − β 32 − β 33 ζ 31 ζ 32 ζ 33 G 12 H z Linear Biisotropic Medium χ σκµν F 01 F 02 F 03 F 23 F 31 F 12 − E x − E y − E z B x B y B z G 01 D x − ǫ 0 0 α 0 0 G 02 D y 0 − ǫ 0 0 α 0 G 03 D z 0 0 − ǫ 0 0 α G 23 H x − β 0 0 ζ 0 0 G 31 H y 0 − β 0 0 ζ 0 G 12 H z 0 0 − β 0 0 ζ

  26. Immediate Antisymmetry and the Lagrangian First Antisymmetry G σκ = χ σκµν F µν

  27. Immediate Antisymmetry and the Lagrangian First Antisymmetry G σκ = χ σκµν F µν χ σκµν = − χ κσµν = − χ σκνµ ⇒

  28. Immediate Antisymmetry and the Lagrangian First Antisymmetry G σκ = χ σκµν F µν χ σκµν = − χ κσµν = − χ σκνµ ⇒ Lagrangian L = 1 8 χ µνσκ F µν F σκ

  29. Immediate Antisymmetry and the Lagrangian First Antisymmetry G σκ = χ σκµν F µν χ σκµν = − χ κσµν = − χ σκνµ ⇒ Lagrangian L = 1 8 χ µνσκ F µν F σκ Euler-Lagrange Derivitive ∂ ∂ ( ∂ A η /∂ x λ ) = ( ∂ L ∂ L → ) ,λ = 0 uniform media ∂ x λ ∂ A η,λ

  30. Consequence of Lagrange Derivitive Computing the Lagrange Derivitive 4 ∂ L = χ µνσκ ∂ ( F µν F σκ ) ∂ A η,λ ∂ ( A η,λ )

  31. Consequence of Lagrange Derivitive Computing the Lagrange Derivitive 4 ∂ L = χ µνσκ ∂ ( F µν F σκ ) ∂ A η,λ ∂ ( A η,λ ) | = A [ µ,ν ] ( χ µνηλ − χ µνλη ) + A [ σ,κ ] ( χ ηλσκ − χ λησκ ) | = F µν ( χ µνηλ + χ ηλµν ) | = F µν χ µνηλ + G ηλ

  32. Consequence of Lagrange Derivitive Computing the Lagrange Derivitive 4 ∂ L = χ µνσκ ∂ ( F µν F σκ ) ∂ A η,λ ∂ ( A η,λ ) | = A [ µ,ν ] ( χ µνηλ − χ µνλη ) + A [ σ,κ ] ( χ ηλσκ − χ λησκ ) | = F µν ( χ µνηλ + χ ηλµν ) | = F µν χ µνηλ + G ηλ ( ∂ L µνηλ + G ) ,λ = 0 ⇒ F µν,λ χ ηλ ,λ = 0 ∂ A η,λ

  33. General Symmetry Second Antisymmetry F µν,λ χ µνηλ = 0 χ ηλµν = ± χ µνηλ ⇒

  34. General Symmetry Second Antisymmetry F µν,λ χ µνηλ = 0 χ ηλµν = ± χ µνηλ ⇒ Sub-Matrix Symmetries ǫ ij = ǫ ji ζ kl = ζ lk α mn = ± β nm

  35. General Symmetry Second Antisymmetry F µν,λ χ µνηλ = 0 χ ηλµν = ± χ µνηλ ⇒ Sub-Matrix Symmetries ǫ ij = ǫ ji ζ kl = ζ lk α mn = ± β nm Uniform Biisotropic Linear Media α = β = ˙ ıγ

  36. General Symmetry Second Antisymmetry F µν,λ χ µνηλ = 0 χ ηλµν = ± χ µνηλ ⇒ Sub-Matrix Symmetries ǫ ij = ǫ ji ζ kl = ζ lk α mn = ± β nm Uniform Biisotropic Linear Media ← − α = β = ˙ ıγ ← − This is the punch-line! ← −

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend