features of edge states and domain walls
play

Features of edge states and domain walls in chiral superconductors - PowerPoint PPT Presentation

Features of edge states and domain walls in chiral superconductors Manfred Sigrist NQS2017, YITP Kyoto E k k Chiral superconductors Chiral superconductors - candidates tetragonal URu 2 Si 2 Sr 2 RuO 4 crystal structure odd-parity k = 0 (


  1. Features of edge states and domain walls in chiral superconductors Manfred Sigrist NQS2017, YITP Kyoto E k k

  2. Chiral superconductors Chiral superconductors - candidates tetragonal URu 2 Si 2 Sr 2 RuO 4 crystal structure odd-parity k = ∆ 0 ( k x ± ik y ) ∆ ~ chiral p -wave even-parity k = ∆ 0 ( k x ± ik y ) k z ∆ ~ chiral d -wave µ SR L z = ± 1 polar Kerr effect polar Kerr effect

  3. Chiral superconductors Chiral superconductors - candidates hexagonal SrPtAs UPt 3 crystal structure Pt U odd-parity k = ∆ 0 ( k x ± ik y ) 2 k z ∆ ~ chiral f -wave even-parity k = ∆ 0 ( k x ± ik y ) 2 ∆ ~ chiral d -wave µ SR µ SR L z = ± 2 polar Kerr effect

  4. Content focus on Sr 2 RuO 4 as a chiral p -wave SC edge states and edge currents in a chiral p -wave SC chiral domains many other collaborators: Y. Imai, K. Wakabayashi, A. Furusaki, M. Matsumoto, C. Honerkamp, M. Fischer, T.M. Rice, J. Goryo, W. Huang, ... Sarah Etter Adrien Bouhon former doctor students at ETH Zurich

  5. Sr 2 RuO 4 possible odd-parity spin-triplet states Maeno et al 1994 ✓ ◆ 0 k x ± ik y ˆ Ψ ( ~ k ) = layered crystal 0 k x ± ik y structure quasi-2D metal A -phase chiral phase pair wave function ✓ − k x + ik y ◆ 0 ✓ Ψ ↑↑ Ψ ( ~ ˆ k ) = ◆ Ψ ↑↓ 0 k x + ik y ˆ Ψ = Ψ ↓↑ Ψ ↓↓ B -phase helical phase

  6. Sr 2 RuO 4 - chiral p-wave superconductor Maeno et al 1994 ✓ ◆ 0 k x ± ik y ˆ Ψ ( ~ k ) = layered crystal 0 k x ± ik y structure quasi-2D metal A -phase chiral phase identifaction • intrinsic magnetism ✓ − k x + ik y ◆ 0 • inplane spin polarizable Ψ ( ~ ˆ k ) = 0 k x + ik y • multi-component • polar Kerr effect B -phase helical phase • phase-sensitive SQUID

  7. Sr 2 RuO 4 - chiral p-wave superconductor Maeno et al 1994 ke ± i θ k ✓ ◆ 0 ˆ Ψ ( ~ k ) = layered crystal ke ± i θ k 0 structure quasi-2D metal A -phase chiral phase identifaction phase winding around the FS • intrinsic magnetism gap function • inplane spin polarizable nodeless gap ∆ k = | ∆ 0 | e + i θ k • multi-component 2-fold degenerate • polar Kerr effect ∆ k = | ∆ 0 | e − i θ k chiral domains • phase-sensitive SQUID chiral - broken time reversal symmetry

  8. intrinsic magnetism in Sr 2 RuO 4 ? random local magnetism edge state currents ''edge currents'' around scanning probes at mesoscopic discs inhomogeneities & defects disc SC N R ≈ 5 µ m µ SR - zero-field relaxtion SC-N T > T c T < T c Luke et al (1998) scanning Hall probe muon-spin depolarization intrinsic magnetism Mackenzie group (2014)

  9. Edge currents

  10. Sr 2 RuO 4 - edge state spectrum edge states for the chiral p-wave state scattering of quasiparticles at the surface solution of Bogolyubov-de Gennes equations subgap bound states (close orbits in particle-hole space) “Andreev reflection” hole Bohr-Sommerfeld quantization I 1 k k surface θ p · d s + φ k 1 + φ k 2 = 2 π n ~ k 1 k 2 phase shifts at turning points ∆ k = | ∆ 0 | e i θ k for | E | ⌧ | ∆ 0 | φ k 1 + φ k 2 = π + θ k 2 − θ k 1 electron | p | ≈ E E = 0 θ k 2 − θ k 1 = π v F specular scattering

  11. Sr 2 RuO 4 - edge state spectrum edge states for the chiral p-wave state scattering of quasiparticles at the surface solution of Bogolyubov-de Gennes equations subgap bound states (close orbits in particle-hole space) “Andreev reflection” hole Bohr-Sommerfeld quantization k k k k surface θ E = E k k = ∆ 0 sin θ = ∆ 0 k 1 k 2 k F 2 θ = π − ( θ ~ k 1 ) k 2 − θ ~ ∆ k = | ∆ 0 | e i θ k electron phase shifts specular scattering

  12. Sr 2 RuO 4 - bulk and edge spectrum edge states for the chiral p-wave state scattering of quasiparticles at the surface solution of Bogolyubov-de Gennes equations subgap bound states (close orbits in particle-hole space) “Andreev reflection” E Bohr-Sommerfeld quantization continuum k k + ∆ 0 E = E k k = ∆ 0 sin θ = ∆ 0 − k F k F k k + k F − ∆ 0 2 θ = π − ( θ ~ k 1 ) k 2 − θ ~ continuum phase shifts note: θ ~ k 2 − θ ~ k 1 = ± π E = 0 result of topological property

  13. Sr 2 RuO 4 - bulk and edge spectrum order parameter deformation E continuum ∆ ~ k = η x k x + η y k y + ∆ 0 − k F | η y | occupied | ∆ 0 | k k + k F − ∆ 0 | η x | continuum x driving currents hole c h fields surface spontaneous a charge B z r current B z ∼ 10 G g e screening electron currents λ

  14. Topology and edge currents Are edge currents a unique topological property? lattice version of chiral p-wave superconductor (tight-binding): k = − 2 t (cos k x a + cos k y a ) + .... − ✏ F ⇠ ~ k = ∆ 0 (sin k x a + i sin k y a ) ∆ ~ +1-winding k y zeros of ∆ ~ k -1-winding k x Chern numbers N = +1 1 st Brillouin zone

  15. Topology and edge currents Are edge currents a unique topological property? lattice version of chiral p-wave superconductor (tight-binding): k = − 2 t (cos k x a + cos k y a ) + .... − ✏ F ⇠ ~ k = ∆ 0 (sin k x a + i sin k y a ) ∆ ~ +1-winding k y zeros of ∆ ~ k -1-winding k x Chern numbers = +1 − 4 × 1 N 2 = − 1 × 1 = − 1 1 st Brillouin zone

  16. Topology and edge currents k y k y N = +1 N = − 1 k x k x E E k k k k

  17. Topology and edge currents k y k y N = +1 N = − 1 k x k x quasiparticle velocity dE k k v q = 1 E E ~ dk k k k k k v q > 0 v q < 0

  18. Topology and edge currents k y k y charge current N = +1 N = − 1 k x k x hole c h surface k k a r g e electron E E backward backward k k k k opposite chirality, but identical current direction

  19. Topology - thermal Hall effect “Spontaneous” Righi-Leduc effect Chern number T 2 chiral QP edge states κ xy = π k 2 B T temperature ∆ kBT ) 12 ~ N + O ( e − gradient heat current Read & Green; Qin, Niu & Shi; Sumiyoshi & Fujimoto; … T 1 chiral QP edge states Lishitz-transition property of the N = +1 ( topological transition) 12 ~ κ xy (subgap) quasiparticles π k 2 B T T ⌧ T c N = − 1 µ

  20. Topology - thermal Hall effect “Spontaneous” Righi-Leduc effect Chern number T 2 chiral QP edge states κ xy = π k 2 B T temperature ∆ kBT ) 12 ~ N + O ( e − gradient heat current Read & Green; Qin, Niu & Shi; Sumiyoshi & Fujimoto; … T 1 chiral QP edge states Lishitz-transition property of the N = +1 ( topological transition) 12 ~ κ xy (subgap) quasiparticles π k 2 B T T ⌧ T c N = − 1 µ v QP > 0 v QP < 0 analog to ν =1 Quantum Hall effect

  21. Topology and edge currents - a further twist particle-hole symmetry n = (1 , 0) ~ y k = ∆ 0 (sin k x a + i sin k y a ) ∆ ~ E x Q = ⇡ ∆ ~ Q = − ∆ ~ ~ a (1 , 1) k + ~ k k k k y ~ ~ k x k 2 k 1

  22. Topology and edge currents - a further twist particle-hole symmetry n = (1 , 0) ~ y k = ∆ 0 (sin k x a + i sin k y a ) ∆ ~ E x Q = ⇡ ∆ ~ Q = − ∆ ~ ~ a (1 , 1) k + ~ k k k k y n = (1 , 1) ~ y ~ k 1 E x k x ~ k 2 k k

  23. Topology and edge currents - a further twist particle-hole symmetry n = (1 , 0) ~ y k = ∆ 0 (sin k x a + i sin k y a ) ∆ ~ E x Q = ⇡ ∆ ~ Q = − ∆ ~ ~ a (1 , 1) k + ~ k k k k y n = (1 , 1) ~ y ~ k 1 E x k x ~ k 2 k k

  24. Topology and edge currents - a further twist particle-hole symmetry n = (1 , 0) ~ y k = ∆ 0 (sin k x a + i sin k y a ) ∆ ~ E x Q = ⇡ ∆ ~ Q = − ∆ ~ ~ a (1 , 1) k + ~ k k k k y n = (1 , 1) ~ y ~ k 1 E x ~ k x Q ~ k 2 new zero-energy momenta k k θ ~ k 2 − θ ~ k 1 = ± π E = 0 no change in Chern number

  25. Topology and edge currents - a further twist n = (1 , 1) ~ E E k k k k current reversal k y k y ~ k 1 ~ k 1 ~ k x k x Q ~ ~ k 2 k 2

  26. Topology and edge currents - a further twist n = (1 , 1) ~ E E k k k k current reversal y y x x A. Bouhon non-circular supercurrent circular supercurrent

  27. Ginzburg-Landau approach - chiral p-wave order parameter: d ( k ) = ˆ z η · k = ˆ z ( η x k x + η y k y ) Z a | η | 2 + b 1 | η | 4 + b 2 ( η ∗ 2 x η 2 y + η 2 x η ∗ 2 y ) + b 3 | η x | 2 | η y | 2 � F = dV + K 1 ( | Π x η x | 2 + | Π y η y | 2 ) + K 2 ( | Π x η y | 2 + | Π y η x | 2 ) + [ K 3 ( Π x η x ) ∗ ( Π y η y ) + K 4 ( Π x η y ) ∗ ( Π y η x ) + c.c. ] Π = ~ i r + 2 e + K 5 | Π z η | 2 + ( r × A ) / 8 π and c A

  28. Ginzburg-Landau approach - chiral p-wave order parameter: d ( k ) = ˆ z η · k = ˆ z ( η x k x + η y k y ) Z a | η | 2 + b 1 | η | 4 + b 2 ( η ∗ 2 x η 2 y + η 2 x η ∗ 2 y ) + b 3 | η x | 2 | η y | 2 � F = dV + K 1 ( | Π x η x | 2 + | Π y η y | 2 ) + K 2 ( | Π x η y | 2 + | Π y η x | 2 ) + [ K 3 ( Π x η x ) ∗ ( Π y η y ) + K 4 ( Π x η y ) ∗ ( Π y η x ) + c.c. ] Π = ~ i r + 2 e + K 5 | Π z η | 2 + ( r × A ) / 8 π and c A length scales for amplitude modulations for the two order parameter components

  29. Ginzburg-Landau approach - chiral p-wave order parameter: d ( k ) = ˆ z η · k = ˆ z ( η x k x + η y k y ) Z a | η | 2 + b 1 | η | 4 + b 2 ( η ∗ 2 x η 2 y + η 2 x η ∗ 2 y ) + b 3 | η x | 2 | η y | 2 � F = dV + K 1 ( | Π x η x | 2 + | Π y η y | 2 ) + K 2 ( | Π x η y | 2 + | Π y η x | 2 ) + [ K 3 ( Π x η x ) ∗ ( Π y η y ) + K 4 ( Π x η y ) ∗ ( Π y η x ) + c.c. ] Π = ~ i r + 2 e + K 5 | Π z η | 2 + ( r × A ) / 8 π and c A edge currents for chiral phase

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend