atomic magnetometers new twists to the old story
play

Atomic magnetometers: new twists to the old story Michael Romalis - PowerPoint PPT Presentation

Atomic magnetometers: new twists to the old story Michael Romalis Princeton University Outline K magnetometer Elimination of spin-exchange relaxation Experimental setup Magnetometer performance Theoretical sensitivity


  1. Atomic magnetometers: new twists to the old story Michael Romalis Princeton University

  2. Outline • K magnetometer ⇒ Elimination of spin-exchange relaxation ⇒ Experimental setup ⇒ Magnetometer performance ⇒ Theoretical sensitivity ⇒ Magnetic field mapping and other applications • K- 3 He co-magnetometer ⇒ K- 3 He spin-exchange ⇒ Self-compensating operation ⇒ Coupled spin resonances ⇒ CPT tests and other fundamental measurements

  3. Atomic Spin Magnetometers ω = γ B • Optically pumped alkali-metals: K, Rb, Cs • Hyperpolarized noble gases: 3 He, 129 Xe • DNP-enhanced NMR: H 1 δω = Fundamental Sensitivity limit: T 2 Nt P

  4. • State-of-the-Art magnetometers: D. Budker (Berkeley) ⇒ Alkali-metal: K or Rb ⇒ Large cell: 10 - 15 cm diameter E. Aleksandrov (St. Petersburg) ⇒ Surface coating to reduce spin relaxation ⇒ Alkali-metal denstity ~ 10 9 cm -3 ⇒ Linewidth ~ 1 Hz • Fundamental Limitation: Spin-exchange collisions g µ B –1 = σ se v n T 2 γ = σ se = 2 × 10 – 14 cm 2 h (2 I + 1) cm 3 δ B = 1fT Hz

  5. Eliminating spin-exchange relaxation • Spin exchange collisions preserve total m F , but change F g µ B B S ω = ± M F=2 F=I ± ½ h (2 I + 1) SE M F=1 ω B ∆ω ≈ 1/Τ se ω B ω • For ω á 1/Τ se (B á 0.1G) M F=2 S ω 1 M F=1 B B ∆ω ≈ 1/Τ sd 3(2 I + 1) 3 + 4 I ( I + 1) ω = 2 ω 1 = 3 ω ω ⇒ No relaxation due to spin exchange (low P)

  6. Zero-Field Magnetometer Faraday Modulator Magnetic Shields B Single Frequency Probe Diode Laser Pump Pump Beam Field Coils l /4 Cell S High Power Probe Beam Oven Diode Laser x Calcite Polarizer Photodiode z y Lock-in Amplifier To computer • Residual fields are zeroed out • Pump laser defines quantization axis • Detect tilt of K polarization due to a magnetic field y • Optical rotation used for detection

  7. Measurements of T 2 • Synchronous optical pumping B Chopped pump beam S − in phase n = 10 14 cm − 3 0.2 ) − out of phase rms 1/T se = 10 5 sec − 1 Lock-in Signal (V 0.1 Lorentzian linewidth = 1.1 Hz 0.0 -0.1 10 20 30 40 50 Chopper Frequency (Hz)

  8. Magnetic Field Dependence –1 = Γ sd + 5 ω 2 6 T 2 3 Γ se (Hz) 5 Γ sd due to K-K, K- 3 He collisions, Resonance half-width Dn 4 diffusion 3 2 1 0 0 50 100 150 200 250 Chopper Frequency (Hz) W. Happer and H. Tang, PRL 31 , 273 (1973), W. Happer and A. Tam, PRA 16 , 1877 (1977)

  9. Spin-Destruction collisions D π 2 – 1 = + σ sd K vn K + σ sd He vn He T 2 2 R Alkali Metal He Ne N 2 1 × 10 − 18 cm 2 8 × 10 − 25 cm 2 1 × 10 − 23 cm 2 K 9 × 10 − 18 cm 2 9 × 10 − 24 cm 2 1 × 10 − 22 cm 2 Rb 2 × 10 − 16 cm 2 3 × 10 − 23 cm 2 6 × 10 − 22 cm 2 Cs • Calculated linewidth n K = 1 × 10 14 cm -3 ⇒ T = 190°C n He = 8 × 10 19 cm -3 ⇒ 3 amg of He R = 1 cm Γ sd =12 sec − 1 (Diff)+7 sec − 1 (K-K)+13 sec − 1 (K-He)+2 sec − 1 (N 2 )=34 sec -1 • From measured linewidth Γ sd = 6 × 2π ∆ν = 41 sec -1 Slowing-down factor

  10. Magnetometer Sensitivity Response to square 700 fT rms modulation at modulation of vertical field different frequencies 2 0.4 Hz) SNR = 70 1 Magnetometer signal Noise spectrum (Vrms/ 0.3 0 0.2 -1 0.1 -2 -3 0 0 1 2 3 4 5 0 10 20 30 40 50 Time (sec) Frequency (Hz) Direct sensitivity measurement gives 10fT/ Hz Highest demonstrated in an atomic magnetometer

  11. Present Limitation • Johnson noise currents in magnetic shields 4 kT ∆ f I = R • Removed all conductors from within the 16” inner shield • Noise estimates 7 ± 2fT/ Hz • No Johnson noise in superconducting shields

  12. Theoretical Sensitivity Estimates • Transverse polarization signal µ P x = g B B y R − 1 ( T 2 + R ) 2 • Probed using optical rotation ⇒ Shot noise for a 1” dia. cell δ B = 0.002fT/ Hz • Higher than theoretical estimates for SQUID detectors

  13. Magnetic Gradient Imaging Multi-Channel • Higher buffer gas pressure Detector • Higher K density Linear Polarizer • Higher pumping rate ⇒ Reduce diffusion B ⇒ Increase bandwidth Pump Laser S ⇒ Suppress Johnson noise Circular Polarization K+He • Applications Gas Cell ⇒ Magnetic fields produced by Probe Linear brain, heart, etc Laser Polarization ⇒ Replacement for arrays of SQUIDs in liquid helium

  14. 3 He Co-magnetometer • Simply replace 4 He buffer gas with 3 He • 3 He is polarized by spin-exchange K-He ⇒ T SE = 40 hours for n K =10 14 cm − 3 He ⇒ T 1 ~ 300 hours 100 80 NMR Signal (mV) 60 40 20 0 0 5 10 15 20 25 30 35 Time (days)

  15. Spin-exchange shifts • Polarized 3 He creates a magnetic field seen by K atoms B K = 8 π 3 κ 0 M He ⇒ Enhanced due to contact interaction: κ 0 = 6 ⇒ Typical value: 1-10 mG • Polarized 3 He does not see its own classical field in a spherical cell ⇒ Long range field average to zero m ⇒ No contact interaction B m m • Polarized K creates a magnetic field seen by 3 He atoms m B He = 8 π 3 κ 0 M K ⇒ Typical value 10-50 µ G

  16. Simultaneous operation Apply an axial magnetic field that: Cancels the field B K due to 3 He, so K magnetometer • operates at zero field Provides a holding field for 3 He, so it doesn’t relax due • to field gradients 2 + ∇ B y – 1 = D ∇ B x 2 T 1 2 B z • Allows self-compensating operation

  17. Magnetic field self-compensation B Bz B x z B K B K S s s S Pump Pump Laser Laser Q Q Probe Probe Laser Laser s = 0 s = 0 Small transverse field Perfect alignment S – electron spin, Q – 3 He spin • Perfect compensation for B z = − B K • 3 He polarization adiabatically follows total magnetic field ⇒ For changes slow compared with 3 He Larmor frequency • K spins do not see a magnetic field change • Also works for magnetic field gradients

  18. Response of the co-magnetometer to a step in vertical magnetic field B z =0.536 mG B z =0.529 mG 10 4 K Signal (arb. units) Vertical Field ( µ G) 5 3 0 2 -5 1 -10 0 0 5 10 15 20 25 Time (sec) Slightly Compensated uncompensated

  19. Adjustment of self-compensation • Response changes sign as axial field is scanned across compensation point Response to Vertical Field Step 1.0 0.5 0.0 -0.5 -1.0 0.51 0.52 0.53 0.54 0.55 0.56 Axial Field (mG)

  20. Frequency response of compensated 3 He-K magnetometer • Apply a sine-wave of varying frequency 3 He-K magnetometer frequency response 2.5 2.0 1.5 1.0 0.5 0.0 0 20 40 60 80 100 Frequency (Hz)

  21. Transient Response B z = 0.868 mG B z = 1.24 mG 0.4 0.0 Signal (arb. units) Signal (arb. units) 0.2 -0.1 0.0 -0.2 -0.2 -0.3 -0.4 -0.4 -0.6 -0.5 0 5 10 15 0 5 10 15 B z = 1.05 mG Time (sec) Time (sec) 0.0 Signal (arb. units) -0.5 -1.0 -1.5 -2.0 -2.5 0 2 4 6 8 10 12 Time (sec)

  22. Transient Response - Bloch Model - 60. mG 50. mG 0.0003 0.0002 0.0002 0.0001 0 0 - 0.0001 - 0.0002 - 0.0002 - 0.0004 - 0.0003 0 10 20 30 40 0 10 20 30 40 - 10. mG 0.0015 0.001 0.0005 0 - 0.0005 - 0.001 - 0.0015 0 10 20 30 40

  23. Large 3 He Perturbation Non-linear 3 He magnetization relaxation (similar to LXe) 6 4 Signal (arb. units) 2 0 -2 -4 -6 0 50 100 150 Time (sec)

  24. CPT Violation • CPT is an exact symmetry in a local field theory with point particles, such as the Standard Model or Supersymmetry • String Theory or any theory of Quantum Gravity is not a local field theory with point particles • Symmetry tests is one of very few possible ways to access Quantum Gravity effects experimentally. • Lorentz Symmetry can also be broken in String Theory • Symmetry violation can be due to Cosmological anisotropy - Was the Universe really created isotropic?

  25. How to detect CPT violation ? • Compare properties of particles and anti-particles ⇒ Masses, magnetic moments, etc ⇒ Anti-particles are difficult to produce and store • Note that CPT violation is a vector interaction L = –b µ ψγ 5 γ µ ψ =–b i σ i ⇒ b µ is a CPT and Lorentz violating vector field in space ⇒ Acts as a magnetic field ⇒ Depends on the orientation of the spin direction in space ⇒ Presumably couples to particles differently from magnetic field ⇒ Can be detected in a co-magnetometer as a diurnal signal

  26. Expected Sensitivity b ie = 10 − 30 GeV, 10fT/ Hz b in = 10 − 33 GeV Integration time of 10 6 sec 2 orders of magnitude improvement over best existing limits b n;p ; 10 ¡ 3 b n;p c n;p ik ; 10 ¡ 3 c n;p d n;p 0 i ; 10 ¡ 3 d n;p b e i ; 10 ¡ 3 b e d e 0 i ; 10 ¡ 3 d e 0 i 0 00 00 00 10 ¡ 24 GeV 10 ¡ 21 electron g ¡ 2 [25] 10 ¡ 26 p [26] p ¡ ¹ 201 Hg- 199 Hg [27] 10 ¡ 29 GeV 10 ¡ 27 10 ¡ 26 21 Ne- 3 He [28] 10 ¡ 27 10 ¡ 27 GeV 10 ¡ 30 GeV Cs- 199 Hg [24] 10 ¡ 25 10 ¡ 28 3 He- 129 Xe[29] 10 ¡ 31 GeV 10 ¡ 28 10 ¡ 28 GeV Polarized Solid [30] 10 ¡ 31 GeV 10 ¡ 34 GeV K- 3 He (This proposal) 10 ¡ 29 10 ¡ 32

  27. Non-magnetic shifts • Light shift suppression ⇒ Pump laser → Perpendicular to probe direction → Tuned exactly on resonance ⇒ Probe Laser → Linearly polarized → Detuned far off-resonance → Perpendicular to field measurement direction • Polarization Shift Suppression → Spherical cell → Polarization perpendicular to the measurement direction → Balanced magnetic fields • Beam Pointing Stability → µ rad stability using active steering ~1/ √ N → Pump power modulation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend