formal solution chen fliess series
play

Formal solution Chen-Fliess series u a ( t ) a , S = S ( t ) S - PowerPoint PPT Presentation

= Title Intro: Control Series expansions Exp-prod, H Sinusoids Feedback Outlook 1 Formal solution Chen-Fliess series u a ( t ) a , S = S ( t ) S ( 0 ) = 1 | Z | = m a Z on algebra A ( Z ) of formal


  1. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Formal solution – Chen-Fliess series � ˙ u a ( t ) a , S = S ( t ) · S ( 0 ) = 1 | Z | = m a ∈ Z on algebra ˆ A ( Z ) of formal power series in aset Z of noncommuting indeterminates (letters) has the unique solution � T � t 1 � t p − 1 � u a p ( t p ) . . . u a 1 ( t 1 ) dt 1 . . . dt p CF ( T , u ) = · · · a 1 . . . a p 0 0 0 � �� � w ∈ Z ∗ � �� � = w Υ w ( T , u ) Use as asymptotic expansion for evolution of output y = ϕ ( x ) x = � a ∈ Z u a f a ( x ) . along solution of ˙ � T � t 1 � t p − 1 � u a p ( t p ) . . . u a 1 ( t 1 ) dt 1 . . . dt p ( f a 1 . . . a i p ϕ )( ϕ ( x ( T , u )) ∼ · · · 0 0 0 w ∈ Z ∗

  2. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Series solution by iteration φ ( x ( t , u )) = 1 · φ ( x 0 ) � t 0 u a ( s ) ds ( f a φ )( x 0 ) + � t 0 u b ( s ) ds ( f b φ )( x 0 ) + � t � s 1 � s 1 + 1 0 u a ( s 1 ) u a ( s 2 ) ds 2 ds 1 ( f a f a φ )( x 0 ) 2 0 0 � t � s 1 + 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 ( f a f b φ )( x 0 ) 2 0 � t � s 1 + 1 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 ( f b f a φ )( x 0 ) 2 0 � t � s 1 + 1 0 u b ( s 1 ) u b ( s 2 ) ds 2 ds 1 ( f b f b φ )( x 0 ) 2 0 � t � s 1 � s 2 + 1 0 u a ( s 1 ) u a ( s 2 ) u a ( s 3 ) ds 3 ds 2 ds 1 ( f a f a f a φ )( x 0 ) 6 0 0 + . . . Objective: Collect first order differential operators, and minimize number of higher order differential operators involved

  3. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Integrate by parts: The wrong way to do it � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f a f b + 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 f b f a = 0 0 � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f a f b − 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f b f a = 0 0 � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f b f a + 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 f b f a + 0 0

  4. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Integrate by parts: The wrong way to do it � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f a f b + 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 f b f a = 0 0 � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f a f b − 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f b f a = 0 0 � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f b f a + 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 f b f a + 0 0

  5. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Integrate by parts: The wrong way to do it � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f a f b + 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 f b f a = 0 0 � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f a f b − 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f b f a = 0 0 � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f b f a + 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 f b f a + 0 0 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 ( f a f b − f b f a ) = 0 � � � t � s 1 � s 1 u a ( s 1 ) 0 u b ( s 2 ) + u b ( s 1 ) 0 u a ( s 2 ) ds 2 + ds 1 f b f a 0

  6. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Integrate by parts: The wrong way to do it � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f a f b + 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 f b f a = 0 0 � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f a f b − 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f b f a = 0 0 � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f b f a + 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 f b f a + 0 0 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 ( f a f b − f b f a ) = 0 � � � t � s 1 � s 1 u a ( s 1 ) 0 u b ( s 2 ) + u b ( s 1 ) 0 u a ( s 2 ) ds 2 + ds 1 f b f a 0 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 ( f a f b − f b f a ) = 0 �� t � �� t � 0 u a ( s ) ds 0 u b ( s ) ds + · f b f a

  7. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Integrate by parts: The wrong way to do it � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f a f b + 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 f b f a = 0 0 � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f a f b − 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f b f a = 0 0 � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f b f a + 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 f b f a + 0 0 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 ( f a f b − f b f a ) = 0 � � � t � s 1 � s 1 u a ( s 1 ) 0 u b ( s 2 ) + u b ( s 1 ) 0 u a ( s 2 ) ds 2 + ds 1 f b f a 0 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 ( f a f b − f b f a ) = 0 �� t � �� t � 0 u a ( s ) ds 0 u b ( s ) ds + · f b f a Lie brackets together w/ iterated integrals in right order higher order deriv’s (wrong order) w/ pointwise prod’s of int’s

  8. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Integrate by parts, smart way Do not manipulate iterated integrals and iterated Lie brackets of vector fields by hand – work on level of “words” (their indices) � I ∈{ a , b } ∗ I ⊗ I = 1 ⊗ 1 = 1 ⊗ 1 + a ⊗ a + a ⊗ a + b ⊗ b + b ⊗ b + 1 + 1 aa ⊗ aa aa ⊗ aa 2 2 + 1 + 1 ab ⊗ ab ab ⊗ ( ab − ba ) 2 2 + 1 + 1 ba ⊗ ba ( ab + ba ) ⊗ ba 2 2 + 1 + 1 bb ⊗ bb bb ⊗ bb 2 2 + 1 + 1 aaa ⊗ aaa aaa ⊗ aaa 6 6 + + . . . . . .

  9. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Drop everything except the indices - maps • The iterated integral � t � t 1 � t n − 1 Υ a 1 a 2 ... a n = u a 1 ( t 1 ) u a 2 ( t 2 ) · · · u a n ( t n ) dt n dt n − 1 · · · dt 1 · · · 0 0 0 is uniquely identified by the multi-index (“word”) a 1 a 2 . . . a n • The n -th order partial differential operator f a n ◦ f a n − 1 ◦ . . . f a 1 is uniquely identified by the multi-index (“word”) a 1 a 2 . . . a n • The Chen series is identified with the identity map on free associative algebra A ( Z ) over set Z of with | Z | = m � � ∈ ˆ CF ∼ Id A ( Z ) = w ⊗ w A ( Z ) ⊗ A ( Z ) w ∈ Z n n ≥ 0 with shuffle product on left and concatenation on right

  10. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Homomorphisms I • For fixed smooth vector fields f i F : A ( Z ) �→ partial diff operators on C ∞ ( M ) F : ( a 1 a 2 . . . a n ) �→ f a 1 ◦ f a 2 ◦ . . . f a n associative algebras: concatenation �→ composition • For fixed control u ∈ U Z Υ( u ): A ( Z ) �→ AC ([ 0 , T ] , R ) � T � t 1 � t p − 1 Υ( u ): ( a 1 a 2 . . . a n ) �→ · · · u a p ( t p ) . . . u a 1 ( t 1 ) dt 1 . . . dt p 0 0 0 associative algebras (Ree’s theorem): shuffle of words �→ pointwise multiplication of functions

  11. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Recall: definition of the shuffle SKIP Combinatorially: for words w , z ∈ Z ∗ and letters a , b ∈ Z ( w a ) X ( z b ) = (( w a ) X z ) b + ( w X ( z b )) a ( ab ) X ( cd ) = a b c d + a c b d + c a b d + Example: a c d b + c a d b + c d a b Algebraically: transpose of the coproduct ∆ < v X w , z > = < v ⊗ w , ∆( z ) > where ∆: A ( Z ) �→ A ( Z ) ⊗ A ( Z ) by ∆( a ) = 1 ⊗ a + a ⊗ 1 for a ∈ Z

  12. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Shuffles and simplices SKIP On permutations algebras Duchamp and Agrachev consider partially commutative and noncommutative shuffles. Illustration: ✻ ✻ ✻ � � � � � � � � σ 12 � σ 2 σ 1 x 2 � � � = ∪ σ 21 � � � � � ✲ � � ✲ � ✲ σ 1 = ∪ ∪ σ ( 12 ) x 3 = σ 312 ∪ σ 132 ∪ E.g. σ ( 12 ) x 3 = { t : 0 ≤ t 1 ≤ t 2 ≤ 1 , 0 ≤ t 3 ≤ 1 } For multiplicative integrands f ( x , y , z ) = f 1 ( x ) · f 2 ( y ) · f 3 ( z ) �� 1 � � y � 1 � 1 � y � x � 1 � y � z � 1 � z � y ( · ) dx dy · ( · ) dz = ( · ) dz dx dy + ( · ) dx dz dy + ( · ) dx dy dz 0 0 0 0 0 0 0 0 0 0 0 0

  13. ζ = π ′ Title Intro: Control Series expansions Exp-prod, ξ H Sinusoids Feedback Outlook 1 ◦ ξ Homomorphisms II • Restriction is Lie algebra homomorphism F : L ( Z ) ⊆ A ( Z ) �→ Γ ∞ ( M ) (vector fields) • Do not fix controls: iterated integral functionals Υ: ∈ A ( Z ) �→ IIF ( U Z ) � � T � t 1 � t p − 1 u a p ( t p ) . . . u a 1 ( t 1 ) dt 1 . . . dt Υ: ( a 1 a 2 . . . a n ) �→ u �→ · · · 0 0 0 associative algebras: shuffle of words �→ pointwise multiplication of iterated integral functionals • Much better: Theorem: If U = L 1 ([ 0 , T ] , [ − 1 , 1 ]) then Υ: ( A ( Z ) , ∗ ) �→ IIF ( U Z ) is a Zinbiel algebra isomorphism.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend