solvability of matrix exponential equations
play

Solvability of Matrix-Exponential Equations Jol Ouaknine, Amaury - PowerPoint PPT Presentation

Solvability of Matrix-Exponential Equations Jol Ouaknine, Amaury Pouly, Joo Sousa-Pinto, James Worrell University of Oxford Example: 2D robot State: u = ( x , y , x , y ) Discretized actions: ( x , y ) rotate arm by


  1. Solvability of Matrix-Exponential Equations Joël Ouaknine, Amaury Pouly, João Sousa-Pinto, James Worrell University of Oxford

  2. Example: 2D robot State: � u = ( x θ , y θ , x , y ) Discretized actions: ( x , y ) ◮ rotate arm by ψ ◮ change arm length by δ ℓ ( x θ , y θ ) → Linear transformations: θ u ← Au Rotate arm by ψ : Change arm length by δ : � � � � � � cos ψ − sin ψ x x ← y sin ψ cos ψ y � � � � � � x x x θ ← + δ y y y θ � � � � � � x θ cos ψ − sin ψ x θ ← sin ψ cos ψ y θ y θ

  3. Linear dynamical systems Discrete case Continuous case x ′ ( t ) = Ax ( t ) x ( n + 1) = Ax ( n ) ◮ biology, ◮ biology, ◮ software verification, ◮ physics, ◮ probabilistic model ◮ probabilistic model checking, checking, ◮ combinatorics, ◮ electrical circuits, ◮ .... ◮ .... Typical questions ◮ reachability ◮ safety ◮ controllability

  4. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? Example: ∃ n ∈ N such that � n � � � 1 1 1 100 = ? 0 1 0 1

  5. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Example: ∃ n ∈ N such that � n � � � 1 1 1 100 = ? 0 1 0 1

  6. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ n , m ∈ N such that A n B m = C ? Example: ∃ n , m ∈ N such that � n � 1 � m � 1 � � 2 3 1 60 2 2 = ? 0 1 0 1 0 1

  7. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ n , m ∈ N such that A n B m = C ? � Decidable Example: ∃ n , m ∈ N such that � n � 1 � m � 1 � � 2 3 1 60 2 2 = ? 0 1 0 1 0 1

  8. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ n , m ∈ N such that A n B m = C ? � Decidable Input: A 1 , . . . , A k , C ∈ Q d × d matrices i =1 A n i Output: ∃ n 1 , . . . , n k ∈ N such that � k i = C ? Example: ∃ n , m , p ∈ N such that � n � 1 � m � � p � 1 � � 2 3 2 5 81 260 2 2 = ? 0 1 0 1 0 1 0 1

  9. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ n , m ∈ N such that A n B m = C ? � Decidable Input: A 1 , . . . , A k , C ∈ Q d × d matrices i =1 A n i Output: ∃ n 1 , . . . , n k ∈ N such that � k i = C ? � Decidable if A i commute × Undecidable in general Example: ∃ n , m , p ∈ N such that � n � 1 � m � � p � 1 � � 2 3 2 5 81 260 2 2 = ? 0 1 0 1 0 1 0 1

  10. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ n , m ∈ N such that A n B m = C ? � Decidable Input: A 1 , . . . , A k , C ∈ Q d × d matrices i =1 A n i Output: ∃ n 1 , . . . , n k ∈ N such that � k i = C ? � Decidable if A i commute × Undecidable in general Input: A 1 , . . . , A k , C ∈ Q d × d matrices Output: C ∈ � semi-group generated by A 1 , . . . , A k � ? Semi-group: � A 1 , . . . , A k � = all finite products of A 1 , . . . , A k Examples: A 8 3 A 2 A 3 1 A 42 A 1 A 3 A 2 A 1 A 2 A 1 A 2 3

  11. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ n , m ∈ N such that A n B m = C ? � Decidable Input: A 1 , . . . , A k , C ∈ Q d × d matrices i =1 A n i Output: ∃ n 1 , . . . , n k ∈ N such that � k i = C ? � Decidable if A i commute × Undecidable in general Input: A 1 , . . . , A k , C ∈ Q d × d matrices Output: C ∈ � semi-group generated by A 1 , . . . , A k � ? � Decidable if A i commute × Undecidable in general Semi-group: � A 1 , . . . , A k � = all finite products of A 1 , . . . , A k Examples: A 8 3 A 2 A 3 1 A 42 A 1 A 3 A 2 A 1 A 2 A 1 A 2 3

  12. Recap on linear differential equations Let x : R + → R n function, A ∈ Q n × n matrix x 1 ( t ) a 11 · · · a 1 n     . . . ... . . . x ( t ) = A =     . . .     x n ( t ) · · · a n 1 a nn Linear differential equation: x ′ ( t ) = Ax ( t ) x (0) = x 0

  13. Recap on linear differential equations Let x : R + → R n function, A ∈ Q n × n matrix x 1 ( t ) a 11 · · · a 1 n     . . . ... . . . x ( t ) = A =     . . .     x n ( t ) · · · a n 1 a nn Linear differential equation: x ′ ( t ) = Ax ( t ) x (0) = x 0 Examples: � x ′ 1 ( t )= x 2 ( t ) x ′ ( t ) = 7 x ( t ) x ′ 2 ( t )= − x 1 ( t ) ❀ x ( t ) = e 7 t � x 1 ( t )= sin( t ) ❀ x 2 ( t )= cos( t )

  14. Recap on linear differential equations Let x : R + → R n function, A ∈ Q n × n matrix x 1 ( t ) a 11 · · · a 1 n     . . . ... . . . x ( t ) = A =     . . .     x n ( t ) · · · a n 1 a nn Linear differential equation: x ′ ( t ) = Ax ( t ) x (0) = x 0 Examples: � ′ � � � � � � x ′ 1 ( t )= x 2 ( t ) 0 1 x 1 x 1 x ′ ( t ) = 7 x ( t ) ⇔ = x ′ 2 ( t )= − x 1 ( t ) x 2 − 1 0 x 2 ❀ x ( t ) = e 7 t � x 1 ( t )= sin( t ) ❀ x 2 ( t )= cos( t )

  15. Recap on linear differential equations Let x : R + → R n function, A ∈ Q n × n matrix x 1 ( t ) a 11 · · · a 1 n     . . . ... . . . x ( t ) = A =     . . .     x n ( t ) · · · a n 1 a nn Linear differential equation: x ′ ( t ) = Ax ( t ) x (0) = x 0 General solution form: x ( t ) = exp( At ) x 0 ∞ M n � where exp( M ) = n ! n =0

  16. Related work in the continuous case Input: A , C ∈ Q d × d matrices Output: ∃ t ∈ R such that e At = C ? Example: ∃ t ∈ R such that �� � � � � 1 1 1 100 exp = ? t 0 1 0 1

  17. Related work in the continuous case Input: A , C ∈ Q d × d matrices Output: ∃ t ∈ R such that e At = C ? � Decidable (PTIME) Example: ∃ t ∈ R such that �� � � � � 1 1 1 100 exp = ? t 0 1 0 1

  18. Related work in the continuous case Input: A , C ∈ Q d × d matrices Output: ∃ t ∈ R such that e At = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ t , u ∈ N such that e At e Bu = C ? Example: ∃ t , u ∈ R such that �� 1 �� � � 1 � � � � 2 3 1 60 2 2 exp exp = ? t u 0 1 0 1 0 1

  19. Related work in the continuous case Input: A , C ∈ Q d × d matrices Output: ∃ t ∈ R such that e At = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ t , u ∈ N such that e At e Bu = C ? × Unknown Example: ∃ t , u ∈ R such that �� � � �� 1 1 � � � � 2 3 1 60 2 2 exp exp = ? t u 0 1 0 1 0 1

  20. Hybrid/Cyber-physical systems ◮ physics: continuous dynamics ◮ electronics: discrete states state continuous dynamics guard φ ( x ) x ′ = F 1 ( x ) x ′ = F 2 ( x ) x ← R ( x ) discrete update

  21. Hybrid/Cyber-physical systems ◮ physics: continuous dynamics ◮ electronics: discrete states state continuous dynamics guard φ ( x ) x ′ = F 1 ( x ) x ′ = F 2 ( x ) x ← R ( x ) discrete update Some classes: Typical questions ◮ F i ( x ) = 1: timed automata ◮ reachability ◮ F i ( x ) = c i : rectangular hybrid automata ◮ safety ◮ F i ( x ) = A i x : linear hybrid automata ◮ controllability

  22. Switching system x ′ = A 1 x x ′ = A 2 x Restricted hybrid system: ◮ linear dynamics ◮ no guards (nondeterministic) x ′ = A 4 x x ′ = A 3 x ◮ no discrete updates switch x 1 ( t ) t x ′ = A 1 x x ′ = A 2 x x ′ = A 3 x x ′ = A 4 x t 1 t 2 t 3 t 4

  23. Switching system x ′ = A 1 x x ′ = A 2 x Restricted hybrid system: ◮ linear dynamics ◮ no guards (nondeterministic) x ′ = A 4 x x ′ = A 3 x ◮ no discrete updates switch x 1 ( t ) t x ′ = A 1 x x ′ = A 2 x x ′ = A 3 x x ′ = A 4 x t 1 t 2 t 3 t 4 Dynamics: e A 4 t 4 e A 3 t 3 e A 2 t 2 e A 1 t 1

  24. Switching system x ′ = A 1 x x ′ = A 2 x Restricted hybrid system: ◮ linear dynamics ◮ no guards (nondeterministic) x ′ = A 4 x x ′ = A 3 x ◮ no discrete updates switch x 1 ( t ) t x ′ = A 1 x x ′ = A 2 x x ′ = A 3 x x ′ = A 4 x t 1 t 2 t 3 t 4 Problem: e A 4 t 4 e A 3 t 3 e A 2 t 2 e A 1 t 1 = C ? What we control: t 1 , t 2 , t 3 , t 4 ∈ R +

  25. Switching system x ′ = A 1 x x ′ = A 2 x What about a loop ? x ′ = A 4 x x ′ = A 3 x

  26. Switching system x ′ = A 1 x x ′ = A 2 x What about a loop ? x ′ = A 4 x x ′ = A 3 x x 1 ( t ) A 1 A 2 A 3 A 4 A 1 A 2 A 3 A 4 t t 1 t 2 t 3 t 4 t ′ t ′ t ′ t ′ 1 2 3 4 Dynamics: e A 4 t ′ 4 e A 3 t ′ 3 e A 2 t ′ 2 e A 1 t ′ 1 e A 4 t 4 e A 3 t 3 e A 2 t 2 e A 1 t 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend