idempotent generation in partition monoids
play

Idempotent generation in partition monoids James East University of - PowerPoint PPT Presentation

Idempotent generation in partition monoids James East University of Western Sydney Workshop on Diagram Algebras 812 Sept 2014 Universit at Stuttgart James East Idempotent generation in partition monoids Joint work with Bob Gray (and


  1. Submonoids of P n � � α ∈ P n : | A ∩ n ′ | = 1 ( ∀ A ∈ α ) T n = — full transformation semigroup ∈ T 5 � � = op T n n ∼ T ∗ — T ∗ n = α ∈ P n : | A ∩ n | = 1 ( ∀ A ∈ α ) � � α ∈ P n : | A ∩ n ′ | ≤ 1 and | A ∩ n | ≤ 1 ( ∀ A ∈ α ) I n = — symmetric inverse monoid (aka rook monoid) ∈ I 5 James East Idempotent generation in partition monoids

  2. Submonoids of P n � � α ∈ P n : | A ∩ n ′ | = 1 ( ∀ A ∈ α ) T n = — full transformation semigroup ∈ T 5 � � = op T n n ∼ T ∗ — T ∗ n = α ∈ P n : | A ∩ n | = 1 ( ∀ A ∈ α ) � � α ∈ P n : | A ∩ n ′ | ≤ 1 and | A ∩ n | ≤ 1 ( ∀ A ∈ α ) I n = — symmetric inverse monoid (aka rook monoid) ∈ I 5 In many ways, P n is just like a transformation semigroup. James East Idempotent generation in partition monoids

  3. Generators Proposition There is a factorization P n = T n I n T ∗ n . Consequently, P n = � s 1 , . . . , s n − 1 , e 1 , . . . , e n , t 1 , . . . , t n − 1 � . 1 i n s i = 1 i n 1 i n e i = t i = James East Idempotent generation in partition monoids

  4. Presentations Theorem (Halverson and Ram, 2005; E, 2011) The partition monoid P n has presentation P n ∼ = � s 1 , . . . , s n − 1 , e 1 , . . . , e n , t 1 , . . . , t n − 1 : (R1—R16) � , where (R1) s 2 (R9) t 2 i = 1 i = t i (R2) s i s j = s j s i (R10) t i t j = t j t i (R3) s i s j s i = s j s i s j (R11) s i t j = t j s i (R4) e 2 i = e i (R12) s i s j t i = t j s i s j (R5) e i e j = e j e i (R13) t i s i = s i t i = t i (R6) s i e j = e j s i (R14) t i e j = e j t i (R7) s i e i = e i +1 s i (R15) t i e j t i = t i (R8) e i e i +1 s i = e i e i +1 (R16) e j t i e j = e j . James East Idempotent generation in partition monoids

  5. Presentations Theorem (Halverson and Ram, 2005; E, 2011) The partition algebra P δ n has presentation n ∼ P δ = � s 1 , . . . , s n − 1 , e 1 , . . . , e n , t 1 , . . . , t n − 1 : (R1—R16) � , where (R1) s 2 (R9) t 2 i = 1 i = t i (R2) s i s j = s j s i (R10) t i t j = t j t i (R3) s i s j s i = s j s i s j (R11) s i t j = t j s i (R4) e 2 i = δ e i (R12) s i s j t i = t j s i s j (R5) e i e j = e j e i (R13) t i s i = s i t i = t i (R6) s i e j = e j s i (R14) t i e j = e j t i (R7) s i e i = e i +1 s i (R15) t i e j t i = t i (R8) e i e i +1 s i = e i e i +1 (R16) e j t i e j = e j . James East Idempotent generation in partition monoids

  6. Presentations Theorem (E, 2011) The singular partition monoid P n \ S n has presentation P n \ S n ∼ = � e 1 , . . . , e n , t ij (1 ≤ i < j ≤ n ) : (R1—R10) � , where (R1) e 2 i = e i (R6) e k t ij e k = e k (R2) e i e j = e j e i (R7) t ij e k = e k t ij (R3) t 2 ij = t ij (R8) t ij t jk = t jk t ki = t ki t ij (R9) e k t ki e i t ij e j t jk e k = e k t kj e j t ji e i t ik e k (R4) t ij t kl = t kl t ij (R5) t ij e k t ij = t ij (R10) e k t ki e i t ij e j t jl e l t lk e k = e k t kl e l t li e i t ij e j t jk e k . 1 i n 1 i j n e i = t ij = James East Idempotent generation in partition monoids

  7. Presentations Theorem (Kudryavtseva and Mazorchuk, 2006; see also Birman-Wenzl and Barcelo-Ram) The Brauer monoid B n has presentation B n ∼ = � s 1 , . . . , s n − 1 , u 1 , . . . , u n − 1 : (R1—R10) � , where (R1) s 2 i = 1 (R5) u i u j = u j u i (R9) s i u j u i = s j u i (R2) s i s j = s j s i (R6) s i u j = u j s i (R10) u i u j s i = u i s j . (R3) s i s j s i = s j s i s j (R7) s i u i = u i s i = u i (R4) u 2 i = u i (R8) u i u j u i = u i 1 1 i n i n s i = u i = James East Idempotent generation in partition monoids

  8. Presentations Theorem (Maltcev and Mazorchuk, 2007) The singular Brauer monoid B n \ S n has presentation B n \ S n ∼ = � u ij (1 ≤ i < j ≤ n ) : (R1—R6) � , where (R1) u 2 ij = u ij (R4) u ij u ik u jk = u ij u jk (R2) u ij u kl = u kl u ij (R5) u ij u jk u kl = u ij u il u kl (R3) u ij u jk u ij = u ij (R6) u ij u kl u ik = u ij u jl u ik . 1 i j n u ij = James East Idempotent generation in partition monoids

  9. Presentations Theorem (Borisavljevi´ c, Doˇ sen, Petri´ c, 2002; see also Jones, Kauffman, etc) The (singular) Temperley-Lieb monoid TL n has presentation TL n ∼ = � u 1 , . . . , u n − 1 : (R1—R3) � , where (R1) u 2 i = u i (R2) u i u j = u j u i (R3) u i u j u i = u i . 1 i n u i = James East Idempotent generation in partition monoids

  10. Idempotent generation — questions So the singular parts of P n , B n , TL n are idempotent generated . . . James East Idempotent generation in partition monoids

  11. Idempotent generation — questions So the singular parts of P n , B n , TL n are idempotent generated . . . What is the smallest number of (idempotent) partitions required to generate P n \ S n ? James East Idempotent generation in partition monoids

  12. Idempotent generation — questions So the singular parts of P n , B n , TL n are idempotent generated . . . What is the smallest number of (idempotent) partitions required to generate P n \ S n ? i.e., What is the rank and idempotent rank , rank( P n \ S n ) and idrank( P n \ S n )? James East Idempotent generation in partition monoids

  13. Idempotent generation — questions So the singular parts of P n , B n , TL n are idempotent generated . . . What is the smallest number of (idempotent) partitions required to generate P n \ S n ? i.e., What is the rank and idempotent rank , rank( P n \ S n ) and idrank( P n \ S n )? How many (idempotent) generating sets of minimal size are there? James East Idempotent generation in partition monoids

  14. Idempotent generation — questions So the singular parts of P n , B n , TL n are idempotent generated . . . What is the smallest number of (idempotent) partitions required to generate P n \ S n ? i.e., What is the rank and idempotent rank , rank( P n \ S n ) and idrank( P n \ S n )? How many (idempotent) generating sets of minimal size are there? What about other ideals of P n ? James East Idempotent generation in partition monoids

  15. Idempotent generation — questions So the singular parts of P n , B n , TL n are idempotent generated . . . What is the smallest number of (idempotent) partitions required to generate P n \ S n ? i.e., What is the rank and idempotent rank , rank( P n \ S n ) and idrank( P n \ S n )? How many (idempotent) generating sets of minimal size are there? What about other ideals of P n ? How many idempotents does P n contain? James East Idempotent generation in partition monoids

  16. Idempotent generation — questions So the singular parts of P n , B n , TL n are idempotent generated . . . What is the smallest number of (idempotent) partitions required to generate P n \ S n ? i.e., What is the rank and idempotent rank , rank( P n \ S n ) and idrank( P n \ S n )? How many (idempotent) generating sets of minimal size are there? What about other ideals of P n ? How many idempotents does P n contain? What about infinite partition monoids P X ? James East Idempotent generation in partition monoids

  17. Idempotent generation — questions So the singular parts of P n , B n , TL n are idempotent generated . . . What is the smallest number of (idempotent) partitions required to generate P n \ S n ? i.e., What is the rank and idempotent rank , rank( P n \ S n ) and idrank( P n \ S n )? How many (idempotent) generating sets of minimal size are there? What about other ideals of P n ? How many idempotents does P n contain? What about infinite partition monoids P X ? Same questions for B n and TL n . . . James East Idempotent generation in partition monoids

  18. Number of idempotents — B n Theorem ( Dolinka, E, Evangelou, FitzGerald, Ham, Hyde, Loughlin, 2014) The number of idempotents in the Brauer monoid B n is equal to n ! � e n = µ 1 ! · · · µ n ! · 2 µ 2 · · · (2 k ) µ 2 k µ ⊢ n where k = ⌊ n / 2 ⌋ — i.e., n = 2 k or 2 k + 1. James East Idempotent generation in partition monoids

  19. Number of idempotents — B n Theorem ( Dolinka, E, Evangelou, FitzGerald, Ham, Hyde, Loughlin, 2014) The number of idempotents in the Brauer monoid B n is equal to n ! � e n = µ 1 ! · · · µ n ! · 2 µ 2 · · · (2 k ) µ 2 k µ ⊢ n where k = ⌊ n / 2 ⌋ — i.e., n = 2 k or 2 k + 1. The numbers e n satisfy the recurrence e 0 = 1, e n = a 1 e n − 1 + a 2 e n − 2 + · · · + a n e 0 � n − 1 � � n − 1 � where a 2 i = (2 i − 1)! and a 2 i +1 = (2 i + 1)!. 2 i − 1 2 i James East Idempotent generation in partition monoids

  20. Number of idempotents — B δ n Theorem (DEEFHHL, 2014) The number of idempotent basis elements in the Brauer algebra B δ n is equal to n ! � µ 1 ! µ 3 ! · · · µ 2 k +1 ! , µ where k = ⌊ n − 1 2 ⌋ , the sum is over all integer partitions µ ⊢ n with only odd parts, δ is not a root of unity. James East Idempotent generation in partition monoids

  21. Number of idempotents — P n Theorem (DEEFHHL, 2014) The number of idempotents in the partition monoid P n is equal to c (1) µ 1 · · · c ( n ) µ n � n ! · µ 1 ! · · · µ n ! · (1!) µ 1 · · · ( n !) µ n , µ ⊢ n where k � c ( k ) = (1 + rs ) c ( k , r , s ), and r , s =1 c ( k , r , 1) = S ( k , r ) c ( k , 1 , s ) = S ( k , s ) c ( k , r , s ) = s · c ( k − 1 , r − 1 , s ) + r · c ( k − 1 , r , s − 1) + rs · c ( k − 1 , r , s ) k − 2 � r − 1 s − 1 � k − 2 � � � � � + a ( s − b ) + b ( r − a ) c ( m , a , b ) c ( k − m − 1 , r − a , s − b ) m m =1 a =1 b =1 if r , s ≥ 2. James East Idempotent generation in partition monoids

  22. Number of idempotents — P δ n Theorem (DEEFHHL, 2014) The number of idempotent basis elements in the partition algebra P δ n is equal to c ′ (1) µ 1 · · · c ′ ( n ) µ n � n ! · µ 1 ! · · · µ n ! · (1!) µ 1 · · · ( n !) µ n , µ ⊢ n where k � c ′ ( k ) = rs · c ( k , r , s ), and r , s =1 δ is not a root of unity. James East Idempotent generation in partition monoids

  23. Less algebra, more diagrams. . . James East Idempotent generation in partition monoids

  24. Number of idempotents — TL 1 – TL 7 (GAP) The number of idempotents in TL n is currently unknown. James East Idempotent generation in partition monoids

  25. Number of idempotents — TL 8 – TL 11 (GAP) The number of idempotents in TL n is currently unknown. James East Idempotent generation in partition monoids

  26. Number of idempotents — inside TL 15 – TL 17 (GAP) The number of idempotents in TL n is currently unknown. Thanks to Attila Egri-Nagy for these . . . James East Idempotent generation in partition monoids

  27. Rank and idempotent rank — P n \ S n James East Idempotent generation in partition monoids

  28. Rank and idempotent rank — P n \ S n Theorem (E, 2011) P n \ S n is idempotent generated. P n \ S n = � e 1 , . . . , e n , t ij (1 ≤ i < j ≤ n ) � . 1 r n 1 i j n e r = t ij = James East Idempotent generation in partition monoids

  29. Rank and idempotent rank — P n \ S n Theorem (E, 2011) P n \ S n is idempotent generated. P n \ S n = � e 1 , . . . , e n , t ij (1 ≤ i < j ≤ n ) � . 1 r n 1 i j n e r = t ij = � n � � n +1 � = n ( n +1) rank( P n \ S n ) = idrank( P n \ S n ) = n + = . 2 2 2 James East Idempotent generation in partition monoids

  30. Minimal idempotent generating sets — P n \ S n Any minimal idempotent generating set for P n \ S n is a subset of { e r : 1 ≤ r ≤ n } ∪ { t ij , f ij , f ji , g ij , g ji : 1 ≤ i < j ≤ n } . 1 r n 1 i j n e r = t ij = 1 i j n 1 i j n f ij = f ji = 1 i j n 1 i j n g ij = g ji = James East Idempotent generation in partition monoids

  31. Minimal idempotent generating sets — P n \ S n Any minimal idempotent generating set for P n \ S n is a subset of { e r : 1 ≤ r ≤ n } ∪ { t ij , f ij , f ji , g ij , g ji : 1 ≤ i < j ≤ n } . 1 r n 1 i j n e r = t ij = 1 i j n 1 i j n f ij = f ji = 1 i j n 1 i j n g ij = g ji = To see which subsets generate P n \ S n , we create a graph. . . James East Idempotent generation in partition monoids

  32. Minimal idempotent generating sets — P n \ S n Let Γ n be the di-graph with vertex set V (Γ n ) = { A ⊆ n : | A | = 1 or | A | = 2 } and edge set E (Γ n ) = { ( A , B ) : A ⊆ B or B ⊆ A } . 1 15 12 5 2 25 14 13 45 35 24 23 4 3 34 Γ 5 (with loops omitted) James East Idempotent generation in partition monoids

  33. Minimal idempotent generating sets — P n \ S n For only $59.95. . . James East Idempotent generation in partition monoids

  34. Minimal idempotent generating sets — P n \ S n Let Γ n be the di-graph with vertex set V (Γ n ) = { A ⊆ n : | A | = 1 or | A | = 2 } and edge set E (Γ n ) = { ( A , B ) : A ⊆ B or B ⊆ A } . 1 15 12 5 2 25 14 13 45 35 24 23 4 3 34 Γ 5 (with loops omitted) James East Idempotent generation in partition monoids

  35. Minimal idempotent generating sets — P n \ S n Let Γ n be the di-graph with vertex set V (Γ n ) = { A ⊆ n : | A | = 1 or | A | = 2 } and edge set E (Γ n ) = { ( A , B ) : A ⊆ B or B ⊆ A } . e 1 = 1 15 12 5 2 25 14 13 45 35 24 23 4 3 34 Γ 5 (with loops omitted) James East Idempotent generation in partition monoids

  36. Minimal idempotent generating sets — P n \ S n Let Γ n be the di-graph with vertex set V (Γ n ) = { A ⊆ n : | A | = 1 or | A | = 2 } and edge set E (Γ n ) = { ( A , B ) : A ⊆ B or B ⊆ A } . e 1 = 1 15 12 5 2 25 14 13 = t 45 45 35 24 23 4 3 34 Γ 5 (with loops omitted) James East Idempotent generation in partition monoids

  37. Minimal idempotent generating sets — P n \ S n Let Γ n be the di-graph with vertex set V (Γ n ) = { A ⊆ n : | A | = 1 or | A | = 2 } and edge set E (Γ n ) = { ( A , B ) : A ⊆ B or B ⊆ A } . e 1 = 1 15 12 5 2 25 14 13 = t 45 45 35 24 23 f 23 = 4 3 34 Γ 5 (with loops omitted) James East Idempotent generation in partition monoids

  38. Minimal idempotent generating sets — P n \ S n Let Γ n be the di-graph with vertex set V (Γ n ) = { A ⊆ n : | A | = 1 or | A | = 2 } and edge set E (Γ n ) = { ( A , B ) : A ⊆ B or B ⊆ A } . e 1 = 1 = g 51 15 12 5 2 25 14 13 = t 45 45 35 24 23 f 23 = 4 3 34 Γ 5 (with loops omitted) James East Idempotent generation in partition monoids

  39. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). James East Idempotent generation in partition monoids

  40. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  41. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  42. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  43. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  44. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  45. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  46. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  47. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  48. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  49. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  50. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  51. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  52. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  53. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  54. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  55. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  56. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 James East Idempotent generation in partition monoids

  57. Minimal idempotent generating sets — P n \ S n A subgraph H of a di-graph G is a permutation subgraph if V ( H ) = V ( G ) and the edges of H induce a permutation of V ( G ). 1 15 12 5 2 25 14 13 45 35 24 23 4 34 3 A permutation subgraph of Γ n is determined by: a permutation of a subset A of n with no fixed points or 2-cycles ( A = { 2 , 3 , 5 } , 2 �→ 3 �→ 5 �→ 2), and a function n \ A → n with no 2-cycles (1 �→ 4, 4 �→ 4). James East Idempotent generation in partition monoids

  58. Minimal idempotent generating sets — P n \ S n Theorem (E+Gray, 2014) The minimal idempotent generating sets of P n \ S n are in one-one correspondence with the permutation subgraphs of Γ n . The number of minimal idempotent generating sets of P n \ S n is equal to n � n � � a k b n , n − k , k k =0 where a 0 = 1, a 1 = a 2 = 0, a k +1 = ka k + k ( k − 1) a k − 2 , and ⌊ k 2 ⌋ � k � � ( − 1) i (2 i − 1)!! n k − 2 i . b n , k = 2 i i =0 n 0 1 2 3 4 5 6 7 · · · 1 1 3 20 201 2604 40915 754368 · · · James East Idempotent generation in partition monoids

  59. Ideals — P n \ S n James East Idempotent generation in partition monoids

  60. Ideals — P n \ S n The ideals of P n are I r = { α ∈ P n : α has ≤ r transverse blocks } for 0 ≤ r ≤ n . James East Idempotent generation in partition monoids

  61. Ideals — P n \ S n The ideals of P n are I r = { α ∈ P n : α has ≤ r transverse blocks } for 0 ≤ r ≤ n . Theorem (E+Gray, 2014) If 0 ≤ r ≤ n − 1, then I r is idempotent generated, and n � j � � rank( I r ) = idrank( I r ) = S ( n , j ) . r j = r James East Idempotent generation in partition monoids

  62. Ideals — P n \ S n The ideals of P n are I r = { α ∈ P n : α has ≤ r transverse blocks } for 0 ≤ r ≤ n . Theorem (E+Gray, 2014) If 0 ≤ r ≤ n − 1, then I r is idempotent generated, and n � j � � rank( I r ) = idrank( I r ) = S ( n , j ) . r j = r The idempotent generating sets of this size have not been classified/enumerated (for 1 ≤ r ≤ n − 2). James East Idempotent generation in partition monoids

  63. Rank and idempotent rank — B n \ S n James East Idempotent generation in partition monoids

  64. Rank and idempotent rank — B n \ S n Theorem (Maltcev and Mazorchuk, 2007) B n \ S n is idempotent generated. B n \ S n = � u ij (1 ≤ i < j ≤ n ) � . 1 i j n u ij = James East Idempotent generation in partition monoids

  65. Rank and idempotent rank — B n \ S n Theorem (Maltcev and Mazorchuk, 2007) B n \ S n is idempotent generated. B n \ S n = � u ij (1 ≤ i < j ≤ n ) � . 1 i j n u ij = � n � = n ( n − 1) rank( B n \ S n ) = idrank( B n \ S n ) = . 2 2 James East Idempotent generation in partition monoids

  66. Minimal idempotent generating sets — B n \ S n Let Λ n be the di-graph with vertex set V (Λ n ) = { A ⊆ n : | A | = 2 } and edge set E (Λ n ) = { ( A , B ) : A ∩ B � = ∅} . 12 12 23 13 24 14 23 13 34 Λ 3 Λ 4 James East Idempotent generation in partition monoids

  67. Minimal idempotent generating sets — B n \ S n Theorem (E+Gray, 2014) The minimal idempotent generating sets of B n \ S n are in one-one correspondence with the permutation subgraphs of Λ n . No formula is known for the number of minimal idempotent generating sets of B n \ S n (yet). Very hard! n 0 1 2 3 4 5 6 7 1 1 1 6 265 126,140 855,966,441 ???? 1 1 1 2 12 288 34,560 24,883,200 There are (way) more than ( n − 1)! · ( n − 2)! · · · 3! · 2! · 1!. Thanks to James Mitchell for n = 5 , 6 (GAP). James East Idempotent generation in partition monoids

  68. Ideals — B n \ S n The ideals of B n are I r = { α ∈ B n : α has ≤ r transverse blocks } for 0 ≤ r = n − 2 k ≤ n . Theorem (E+Gray, 2014) If 0 ≤ r = n − 2 k ≤ n − 2, then I r is idempotent generated and � n � n ! rank( I r ) = idrank( I r ) = (2 k − 1)!! = 2 k k ! r ! . 2 k James East Idempotent generation in partition monoids

  69. Rank and idempotent rank — TL n Theorem (Borisavljevi´ c, Doˇ sen, Petri´ c, 2002, etc) TL n is idempotent generated. TL n = � u 1 , . . . , u n − 1 � . 1 i n u i = rank( TL n ) = idrank( TL n ) = n − 1. James East Idempotent generation in partition monoids

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend