set partition tableaux
play

SET-PARTITION TABLEAUX Tom Halverson Macalester College FPSAC 2019 - PowerPoint PPT Presentation

SET-PARTITION TABLEAUX Tom Halverson Macalester College FPSAC 2019 Ljubljana July 2, 2019 1/25 Set-Partition Tableaux Integer Partition: Organization: I. Origins: Representation 8 , 13 14 Theory of the Symmetric 2 , 3 1 , 6 , 10 16


  1. SET-PARTITION TABLEAUX Tom Halverson Macalester College FPSAC 2019 Ljubljana July 2, 2019 1/25

  2. Set-Partition Tableaux Integer Partition: Organization: I. Origins: Representation 8 , 13 14 Theory of the Symmetric 2 , 3 1 , 6 , 10 16 Group 4 12 II. Schur-Weyl Duality: The 5 , 7 , 9 15 , 17 Partition Algebra and Other Diagram Algebras 11 III. Insertion Bijections Set Partition: May 2016: 8 9 { 2 , 3 } , { 4 } , { 5 , 7 , 9 } , [Benkart-H-Harmon] Dimensions of > > > > < = { 1 , 6 , 10 } , { 11 } , { 12 } , irreducible modules ... { 8 , 13 } , { 14 } , { 16 } , [Orellana-Zabrocki] Symmetric > > > > : ; { 15 , 17 } group characters as symmetric functions 1/25

  3. I. Symmetric Group Tensor Power Representations 1/25

  4. Origins: The Symmetric Group S n I M n = n -dimensional permutation module ⇠ = S n � S n I Basis: v 1 , v 2 , . . . , v n with group action: � ( v i ) = v σ ( i ) I S λ n = irreducible C S n -module, � ` n I M ⌦ k = k -fold tensor product module n I Diagonal action on basis of simple tensors: � ( v i 1 ⌦ v i 2 ⌦ · · · ⌦ v i k ) = v σ ( i 1 ) ⌦ v σ ( i 2 ) ⌦ · · · ⌦ v σ ( i k ) Question Determine the multiplicity m λ k , n in the decomposition: M M ⌦ k m λ k , n S λ = n n λ ` n 2/25

  5. Method 1: Restriction-Induction Tensor Identity: tensoring with the permutation module is the same as restriction and induction n ⌦ M n ⇠ S λ = Ind S n S n − 1 Res S n S n − 1 ( S λ n ) M ⇠ = Ind S n S ν n � 1 S n − 1 ν = λ � ⇤ M M ⇠ S µ = n µ = ν + ⇤ ν = λ � ⇤ M n ⌦ M n ⇠ S µ S λ = n µ =( λ � ⇤ )+ ⇤ 3/25

  6. Bratteli Diagram: B ( S 5 , S 4 ) for M ⌦ k 5 M ⊗ 0 5 1 M ⊗ . 5 5 1 M ⊗ 1 5 1 1 M ⊗ 1 . 5 5 1 2 M ⊗ 2 1 1 5 3 2 M ⊗ 2 . 5 1 1 5 5 5 M ⊗ 3 6 6 2 1 5 10 5 M ⊗ 3 . 5 15 8 9 1 5 22 . . . . . . . . . . . . . . . . . . 4/25

  7. Vacillating Tableaux A vacillating tableaux of shape � ` n is a sequence of partitions for which 2 = � i � ⇤ � i + 1 and � i +1 = � i + 1 2 + ⇤ . Example : A vacillating tableaux of length 6 and shape : 0 1 2 3 4 5 6 The multiplicity of S λ n in M ⌦ k is given by n m λ k , n = # vacillating tableaux of length k and shape � . 5/25

  8. Method 2: Decompose M ⌦ k into Permutation Modules n I Diagonal Action: � ( v a ⌦ v a ⌦ v b ⌦ v a ⌦ v b ⌦ v c ⌦ v d ⌦ v c ) v σ ( a ) ⌦ v σ ( a ) ⌦ v σ ( b ) ⌦ v σ ( a ) ⌦ v σ ( b ) ⌦ v σ ( c ) ⌦ v σ ( d ) ⌦ v σ ( c ) = 1 2 3 4 5 6 7 8 I Partition tensor positions: P = { 1 , 2 , 4 | 3 , 5 | 6 , 8 | 7 } : v i j = v i ` i ff j ⇠ ` in P I As a , b , c , d vary over distinct elements of { 1 , . . . , n } , these simple tensors span a submodule isomorphic to the permutation module M ( n � 4 , 1 , 1 , 1 , 1) = Ind S n S n − 4 ⇥ S 1 ⇥ S 1 ⇥ S 1 ⇥ S 1 ( 1 ) . 6/25

  9. Decompose M ⌦ k into Permutation Modules n n n ⇢ k � ⇢ k � M M M M ( n � t , 1 t ) ⇠ ⇠ M ⌦ k K λ , ( n � t , 1 t ) S λ = = n n t t t =0 t =0 λ ` n n ⇢ k � M M ⇠ f λ / ( n � t ) S λ = n t t =0 λ ` n ⇢ k � I = # set partitions of { 1 , . . . , k } into t subsets (Stirling 2 nd ) t I K λ , ( n � t , 1 t ) = Kostka number = #semistandard tableaux of shape � filled with 0 , . . . , 0 , 1 , 2 , . . . , t . | {z } n � t 0 0 0 3 7 1 4 6 8 I Example: has � = (5 , 4 , 2 , 1) , n = 12, t = 9. 2 9 5 I K λ , ( n � t , 1 t ) = f λ / ( n � t ) = # standard tableaux shape � / ( n � t ) 7/25

  10. Decompose M ⌦ k into Permutation Modules n n ⇢ k � M M ⇠ f λ / ( n � t ) S λ M ⌦ k = n n t t =0 λ ` n � n ⇢ k � ⇢ � P = partition of { 1 , . . . , k } into t parts X f λ / ( n � t ) = # � m λ k , n = ( P , T ) � t T = standard tableau of shape � / ( n � t ) � t =0 Example . A standard set-partition tableau of shape � = (5 , 4 , 2 , 1) P = { 1 , 6 | 4 , 7 , 9 , 10 | 2 , 11 , 12 | 8 , 14 | 15 , 16 | 5 , 13 , 18 | 3 , 17 , 19 | 20 } t = 8 . 3 , 17 , 19 1 , 6 4 , 7 , 9 , 10 5 , 13 , 18 20 T = 2 , 11 , 12 8 , 14 n = 12 15 , 16 8/25

  11. Set-Partition Tableaux ! Vacillating Tableaux 8 9 8 9 Standard set-partition Vacillating tableaux < = < = m λ k , n = # tableaux of shape ; = # of length k : : ; � / ( n � k ) and shape � 8 9 ( 7 ) 6 0 1 2 3 4 5 6 < = 4 27 ! : 135 ; 9/25

  12. 0 1 2 3 4 5 6 7 6 ! 4 27 135 [BH’19] H-Benkart, [COSSZ’19] Colmenarejo, Orellana, Saliola, Schilling, Zabrocki 6 6 2 2 2 13 4 27 2 13 4 4 4 135 135 135 → 6 6 2 → 27 2 4 → 4 2 13 4 → 135 4 135 135 1. Remove box containing 1 1 m = max ( T ) 2 2. Delete m from the box 3. Schensted insert box → 2 → 1 2 → 13 1 in T > 1 10/25

  13. II. Schur-Weyl Duality and the Partition Algebra 10/25

  14. Centralizer Algebra of S n on M ⌦ k n Centralizer Algebra: n o � � �� ( x ) = �� ( x ) , � 2 S n Z k , n := End S n ( M ⌦ k � 2 End ( M ⌦ k n ) = n ) Schur-Weyl Duality: M M ⇠ ⇠ M ⌦ k m λ k , n S λ f λ Z λ = = n n k , n λ ` n λ ` n | {z } | {z } as an S n -module as a Z k , n -module I m λ k , n = mult k ( S λ n ) = dim( Z λ k , n ) = #(Standard Set-Partition Tableaux) I f λ = dim( S λ n ) = mult( Z λ k , n ) = # (Standard Tableaux) X ( m λ k , n ) 2 Artin-Wedderburn theory: dim( Z k , n ) = λ ` n 11/25

  15. Bratteli Diagram: B ( S 6 , S 5 ) = B ( Z k , 6 ) Sum of Squares (Bell No’s) k = 0 1 1 k = . 5 1 1 k = 1 2 1 1 k = 1 . 5 5 1 2 2 2 + 3 2 + 1 1 + 1 2 = 15 k = 2 1 1 3 2 k = 2 . 5 52 1 1 5 5 k = 3 203 6 6 1 2 1 10 5 k = 3 . 5 876 15 22 9 9 2 1 12/25

  16. Partition Algebra P k ( n ) [P.P. Martin, V.F.R. Jones, ⇡ 1993] Basis of set partitions of { 1 , . . . , k , 1 0 , . . . , k 0 } . 1 2 3 4 5 6 7 8 ⇢ { 1 , 3 , 4 0 } , { 2 , 1 0 } , { 4 , 5 , 7 } , � = { 6 , 8 0 } , { 8 , 6 0 } , { 2 0 , 3 0 } , { 5 0 , 7 0 } 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 Multiplication given by diagram concatenation: = n Generated by 3 types of diagrams: , , 13/25

  17. Action of P k ( n ) on Tensor Space M ⌦ k n I Commutes with S n : Transposition: P k ( n ) ! End S n ( M ⌦ k n ) u 1 u 2 u 3 u 4 u 5 u 6 v 7 v 8 I is surjective I it is injective if n � 2 k u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 the stable case I kernel? [Benkart-H’19] u 1 u 2 u 3 u 4 u 6 v 7 v 8 v n X v = v i projection onto trivial module u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 i =1 δ u 4 , u 5 u 1 u 2 u 3 u 4 u 4 u 6 v 7 v 8 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 14/25

  18. Irreducible Modules for the Partition Algebra M M ⇠ ⇠ Schur-Weyl Duality: M ⌦ k m λ k , n S λ f λ P λ = = n n k λ ` n λ ` n | {z } | {z } as an S n -module as a P k ( n )-module I m λ k , n = dim( P λ k ) = #(Standard Set-Partition Tableaux) I f λ = dim( S λ n ) = # (Standard Tableaux) The irreducible partition algebra module: ⇢ ⇢ standard set-partition � � � P λ � k = C -span � T 2 v T tableaux of shape � Question Is there a combinatorial action analogous to Young’s repre- sentations of S n on standard tableaux? 15/25

  19. Action on Basis Indexed by Set-Partition Tableaux [H-Jacobson, 2018] 1 2 3 4 4 5 6 7 8 9 10 11 12 13 10 13 4 10 , 13 · · · 3 , 5 , 6 11 · · · = 1 , 2 , 3 8 , 11 9 1 , 2 4 12 8 , 9 , 10 7 , 13 5 , 6 , 7 12 1 2 3 4 5 6 7 8 9 10 11 12 13 · · · 3 , 5 , 6 11 · · · 5 8 , 9 10 , 12 , 13 1 , 2 4 12 = 1 , 2 , 4 3 , 6 = 0 8 , 9 , 10 7 , 13 1 , 2 , 4 7 , 11 16/25

  20. Action of Generators , , 1 2 3 4 5 6 7 8 9 3 , 5 1 , 3 · · · · · · 1 , 2 = 2 , 4 4 6 5 7 7 , 9 8 , 9 8 6 17/25

  21. Action of Generators , , 1 2 3 4 5 6 7 8 9 · · · 2 3 , 5 3 , 5 · · · = 1 4 6 1 , 2 4 6 7 , 9 7 , 9 8 8 1 2 3 4 5 6 7 8 9 3 , 5 · · · 4 3 , 5 · · · 1 , 2 4 6 = 1 , 2 6 = 0 7 , 9 8 7 , 9 8 18/25

  22. Action of Generators , , 1 2 3 4 5 6 7 8 9 3 , 5 · · · · · · 1 , 2 4 6 = 1 , 2 , 3 , 5 4 6 7 , 9 8 7 , 9 8 1 2 3 4 5 6 7 8 9 3 , 5 3 , 5 · · · · · · = 1 , 2 1 , 2 4 = 0 4 6 7 , 9 6 , 7 , 9 8 8 19/25

  23. Restricts Naturally to Subalgebras of the Partition Algebra Brauer Algebra Temperley-Lieb (matchings) (planar matchings) 1 , 5 6 , 9 · · · 2 , 3 1 , 5 8 , 9 · · · 4 6 7 2 4 7 3 8 Motzkin Algebra Rook Brauer Algebra (planar partial matchings) (partial matchings) · · · 3 , 4 5 8 7 , 9 · · · 2 1 , 4 5 6 , 8 1 2 6 3 9 7 20/25

  24. Restricts Naturally to Subalgebras of the Partition Algebra Symmetric Group Identity (permutations) (planar permutations) · · · · · · 1 2 5 8 1 2 3 4 5 6 7 8 9 3 4 9 6 7 Rook Monoid Planar Rook Monoid (partial permutations) (planar partial permutations) 3 4 5 7 1 2 3 5 6 9 · · · · · · 1 2 8 4 7 8 6 9 21/25

  25. III. Insertion Bijections 21/25

  26. X k , n ) 2 ( m � III. Insertion Bijections: dim( P k ( n )) = � ` n 1 2 3 4 5 6 0 1 1 , 3 [COSSZ’19] 5 , 2 , 3 6 2 4 @ A 5 , 6 1 , 4 1 2 3 4 5 6 [HL’04] [BH’19] ∗ [CDDSY’06] [COSSZ’19] 0 1 2 3 4 5 6 ⇣ ⌘ P = 0 1 2 3 4 5 6 ⇣ ⌘ Q = 22/25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend