polarized rewriting and tableaux in b set theory
play

Polarized Rewriting and Tableaux in B Set Theory SETS 2018 Olivier - PowerPoint PPT Presentation

Polarized Rewriting and Tableaux in B Set Theory SETS 2018 Olivier Hermant CRI, MINES ParisTech, PSL Research University June 5, 2018 O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 1 / 17 Introduction Assumes


  1. Polarized Rewriting and Tableaux in B Set Theory SETS 2018 Olivier Hermant CRI, MINES ParisTech, PSL Research University June 5, 2018 O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 1 / 17

  2. Introduction ◮ Assumes familiarity with FOL ◮ Tableaux method ◮ Extension with rewriting : Tableaux Modulo Theory ◮ Implementation and benchmark : Zenon Modulo and B Set theory ◮ Proposed extension : polarized rewriting ◮ Discussions O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 2 / 17

  3. Tableaux Method ⊥ ⊙ ⊥ F , ¬ F ⊙ ¬⊤ ⊙ ¬⊤ ⊙ ⊙ ⊙ ¬ ( F ∨ G ) α ¬∨ ¬ ( F ⇒ G ) α ¬⇒ ¬¬ F α ¬¬ F ∧ G α ∧ F F , G ¬ F , ¬ G F , ¬ G ¬ ( F ∧ G ) β ¬∧ F ∨ G β ∨ F ⇒ G β ⇒ F | G ¬ F | G ¬ F | ¬ G ∃ x F ( x ) δ ∃ ¬∀ x F ( x ) δ ¬∀ F ( c ) ¬ F ( c ) ∀ x F ( x ) γ ∀ ¬∃ x F ( x ) γ ¬∃ F ( t ) ¬ F ( t ) O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 3 / 17

  4. Example : Inclusion ◮ we want to show A ⊆ A , for a given set A ◮ axiomatization of inclusion is ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) ◮ we shall refute ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) ◮ the proof : ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 4 / 17

  5. Example : Inclusion ◮ we want to show A ⊆ A , for a given set A ◮ axiomatization of inclusion is ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) ◮ we shall refute ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) ◮ the proof : ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) γ ∀ ∀ y A ⊆ Y ⇔ ( ∀ z z ∈ A ⇒ z ∈ Y ) O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 4 / 17

  6. Example : Inclusion ◮ we want to show A ⊆ A , for a given set A ◮ axiomatization of inclusion is ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) ◮ we shall refute ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) ◮ the proof : ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) γ ∀ ∀ y A ⊆ Y ⇔ ( ∀ z z ∈ A ⇒ z ∈ Y ) γ ∀ A ⊆ A ⇔ ( ∀ z z ∈ A ⇒ z ∈ A ) O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 4 / 17

  7. Example : Inclusion ◮ we want to show A ⊆ A , for a given set A ◮ axiomatization of inclusion is ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) ◮ we shall refute ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) ◮ the proof : ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) γ ∀ ∀ y A ⊆ Y ⇔ ( ∀ z z ∈ A ⇒ z ∈ Y ) γ ∀ A ⊆ A ⇔ ( ∀ z z ∈ A ⇒ z ∈ A ) α ∧ ( ∀ z z ∈ A ⇒ z ∈ A ) ⇒ A ⊆ A , A ⊆ A ⇒ ( ∀ z z ∈ A ⇒ z ∈ A ) O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 4 / 17

  8. Example : Inclusion ◮ we want to show A ⊆ A , for a given set A ◮ axiomatization of inclusion is ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) ◮ we shall refute ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) ◮ the proof : ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) γ ∀ ∀ y A ⊆ Y ⇔ ( ∀ z z ∈ A ⇒ z ∈ Y ) γ ∀ A ⊆ A ⇔ ( ∀ z z ∈ A ⇒ z ∈ A ) α ∧ ( ∀ z z ∈ A ⇒ z ∈ A ) ⇒ A ⊆ A , A ⊆ A ⇒ ( ∀ z z ∈ A ⇒ z ∈ A ) β ⇒ A ⊆ A | ¬∀ z ( z ∈ A ⇒ z ∈ A ) O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 4 / 17

  9. Example : Inclusion ◮ we want to show A ⊆ A , for a given set A ◮ axiomatization of inclusion is ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) ◮ we shall refute ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) ◮ the proof : ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) γ ∀ ∀ y A ⊆ Y ⇔ ( ∀ z z ∈ A ⇒ z ∈ Y ) γ ∀ A ⊆ A ⇔ ( ∀ z z ∈ A ⇒ z ∈ A ) α ∧ ( ∀ z z ∈ A ⇒ z ∈ A ) ⇒ A ⊆ A , A ⊆ A ⇒ ( ∀ z z ∈ A ⇒ z ∈ A ) β ⇒ A ⊆ A | ¬∀ z ( z ∈ A ⇒ z ∈ A ) ⊙ ⊙ O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 4 / 17

  10. Example : Inclusion ◮ we want to show A ⊆ A , for a given set A ◮ axiomatization of inclusion is ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) ◮ we shall refute ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) ◮ the proof : ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) γ ∀ ∀ y A ⊆ Y ⇔ ( ∀ z z ∈ A ⇒ z ∈ Y ) γ ∀ A ⊆ A ⇔ ( ∀ z z ∈ A ⇒ z ∈ A ) α ∧ ( ∀ z z ∈ A ⇒ z ∈ A ) ⇒ A ⊆ A , A ⊆ A ⇒ ( ∀ z z ∈ A ⇒ z ∈ A ) β ⇒ A ⊆ A | ¬∀ z ( z ∈ A ⇒ z ∈ A ) δ ¬∀ ⊙ ⊙ ¬ ( c ∈ A ⇒ c ∈ A ) O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 4 / 17

  11. Example : Inclusion ◮ we want to show A ⊆ A , for a given set A ◮ axiomatization of inclusion is ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) ◮ we shall refute ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) ◮ the proof : ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) γ ∀ ∀ y A ⊆ Y ⇔ ( ∀ z z ∈ A ⇒ z ∈ Y ) γ ∀ A ⊆ A ⇔ ( ∀ z z ∈ A ⇒ z ∈ A ) α ∧ ( ∀ z z ∈ A ⇒ z ∈ A ) ⇒ A ⊆ A , A ⊆ A ⇒ ( ∀ z z ∈ A ⇒ z ∈ A ) β ⇒ A ⊆ A | ¬∀ z ( z ∈ A ⇒ z ∈ A ) δ ¬∀ ⊙ ⊙ ¬ ( c ∈ A ⇒ c ∈ A ) α ¬⇒ c ∈ A , ¬ ( c ∈ A ) O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 4 / 17

  12. Example : Inclusion ◮ we want to show A ⊆ A , for a given set A ◮ axiomatization of inclusion is ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) ◮ we shall refute ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) ◮ the proof : ∀ X ∀ Y X ⊆ Y ⇔ ( ∀ z z ∈ X ⇒ z ∈ Y ) , ¬ ( A ⊆ A ) γ ∀ ∀ y A ⊆ Y ⇔ ( ∀ z z ∈ A ⇒ z ∈ Y ) γ ∀ A ⊆ A ⇔ ( ∀ z z ∈ A ⇒ z ∈ A ) α ∧ ( ∀ z z ∈ A ⇒ z ∈ A ) ⇒ A ⊆ A , A ⊆ A ⇒ ( ∀ z z ∈ A ⇒ z ∈ A ) β ⇒ A ⊆ A | ¬∀ z ( z ∈ A ⇒ z ∈ A ) δ ¬∀ ⊙ ⊙ ¬ ( c ∈ A ⇒ c ∈ A ) α ¬⇒ c ∈ A , ¬ ( c ∈ A ) ⊙ ⊙ O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 4 / 17

  13. Deduction Modulo Theory Rewrite Rule A term (resp. proposition) rewrite rule is a pair of terms (resp. formulæ) l → r , where F V ( l ) ⊆ F V ( r ) and, in the propositiona case, l is atomic. Examples : ◮ term rewrite rule : a ∪ ∅ → a ◮ proposition rewrite rule : a ⊆ b → ∀ x x ∈ a ⇒ x ∈ b Conversion modulo a Rewrite System We consider the congruence ≡ generated by a set of proposition rewrite rules R and a set of term rewrite rules E (often implicit). Forward-only rewriting is denoted ։ . Example : A ∪ ∅ ⊆ A ≡ ∀ x x ∈ A ⇒ x ∈ A O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 5 / 17

  14. Tableaux Modulo Theory ◮ two flavors, essentially equivalent ◮ add a conversion rule : F ( Conv ) , if F ≡ G G ◮ or integrate conversion inside each rule : H α ∧ , if H ≡ F ∧ G F , G O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 6 / 17

  15. Example : Inclusion ◮ delete the axiom ∀ X ∀ Y ( X ⊆ Y ⇔ ∀ z z ∈ X ⇒ z ∈ Y ) ◮ replace with the rewrite rule X ⊆ Y → ∀ z z ∈ X ⇒ z ∈ Y ◮ we now refute only ¬ ( A ⊆ A ) O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 7 / 17

  16. Example : Inclusion ◮ delete the axiom ∀ X ∀ Y ( X ⊆ Y ⇔ ∀ z z ∈ X ⇒ z ∈ Y ) ◮ replace with the rewrite rule X ⊆ Y → ∀ z z ∈ X ⇒ z ∈ Y ◮ we now refute only ¬ ( A ⊆ A ) ◮ yields ¬ ( A ⊆ A ) ( Conv ) ¬ ( ∀ z z ∈ A ⇒ z ∈ A ) α ¬∀ ¬ ( c ∈ A ⇒ c ∈ A ) α ¬⇒ ¬ ( c ∈ A ) , c ∈ A ⊙ ⊙ O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 7 / 17

  17. Expressing B Set Theory with Rewriting ◮ for power set and comprehension s ∈ P ( t ) −→ ∀ x · ( x ∈ s ⇒ x ∈ t ) x ∈ { z | P ( z ) } −→ P ( x ) ◮ derived constructs ◮ with typing, too s ∈ set ( α ) P α ( t ) −→ ∀ x : α · ( x ∈ α s ⇒ x ∈ α t ) O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 8 / 17

  18. Zenon ◮ Zenon : classical first-order tableaux-based ATP ◮ Extended to ML polymorphism ◮ Extended to Deduction Modulo Theory ◮ Extended to linear arithmetic ◮ Reads TPTP input format ◮ Dedukti certificates ◮ work of P . Halmagrand, G. Bury O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 9 / 17

  19. Zenon ◮ Zenon : classical first-order tableaux-based ATP ◮ Extended to ML polymorphism ◮ Extended to Deduction Modulo Theory ◮ Extended to linear arithmetic ◮ Reads TPTP input format ◮ Dedukti certificates ◮ work of P . Halmagrand, G. Bury ◮ We propose to extend it to Polarized Deduction Modulo Theory O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 9 / 17

  20. Benchmarks A set of Proof Obligations ◮ Provided by Industrial Partners ◮ 12.876 PO ◮ Provable : proved in Atelier B (automatically or interactively) ◮ Wide spectrum ◮ Mild difficulty, large files O. Hermant (MINES ParisTech) Polarized Tableaux Modulo in B June 5, 2018 10 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend