on rational shi tableaux
play

On (rational) Shi tableaux Robin Sulzgruber 78 th S eminaire - PowerPoint PPT Presentation

On (rational) Shi tableaux Robin Sulzgruber 78 th S eminaire Lotharingien de Combinatoire March 26 th 29 th 2017 Ottrott France Robin Sulzgruber On (rational) Shi tableaux March 2017 1 / 33 Setting the stage Robin Sulzgruber On


  1. The height of a hyperplane Definition Define the height of a hyperplane H α, k as | ht( α ) − hk | . 13 10 7 4 1 2 5 8 5 13 2 11 [1 , 2 , 3] 1 10 4 14 7 14 11 8 5 2 1 4 7 Robin Sulzgruber On (rational) Shi tableaux March 2017 8 / 33

  2. Shi alcoves Robin Sulzgruber On (rational) Shi tableaux March 2017 9 / 33

  3. Shi alcoves Theorem (Shi 1987, Athanasiadis 2005, Thiel 2015) The regions of the m -Shi arrangement are in bijection with alcoves whose floors have height less than mh + 1. Robin Sulzgruber On (rational) Shi tableaux March 2017 9 / 33

  4. Shi alcoves Theorem (Shi 1987, Athanasiadis 2005, Thiel 2015) The regions of the m -Shi arrangement are in bijection with alcoves whose floors have height less than mh + 1. 13 10 7 4 1 2 5 8 8 5 [1 , 0 , 5] 13 [ − 2 , 5 , 3] [0 , 1 , 5] [2 , 0 , 4] [4 , 2 , 0] 2 [2 , 1 , 3] [0 , 2 , 4] 11 [2 , 3 , 1] [1 , 2 , 3] [0 , 4 , 2] 1 [3 , 2 , 1] [1 , 3 , 2] [ − 1 , 4 , 3] 10 [3 , 1 , 2] [ − 1 , 3 , 4] 4 14 [1 , − 1 , 6] 7 7 10 14 11 8 5 2 1 4 Robin Sulzgruber On (rational) Shi tableaux March 2017 9 / 33

  5. Robin Sulzgruber On (rational) Shi tableaux March 2017 10 / 33

  6. 19 16 13 10 7 4 1 2 5 14 8 11 [1 , − 3 , 8] 19 8 [5 , 1 , 0] [ − 3 , 5 , 4] 11 [ − 5 , 8 , 3] [0 , − 2 , 8] [5 , 0 , 1] [1 , 5 , 0] [ − 3 , 4 , 5] [2 , − 3 , 7] [7 , 2 , − 3] 5 [0 , 5 , 1] [1 , 0 , 5] [2 , 4 , 0] 16 [5 , 3 , − 2] [ − 2 , 5 , 3] [0 , 1 , 5] [2 , 0 , 4] [4 , 2 , 0] [ − 3 , 7 , 2] 2 [ − 2 , 3 , 5] [2 , 1 , 3] [0 , 2 , 4] [4 , 0 , 2] 14 [3 , − 2 , 5] [2 , 3 , 1] [1 , 2 , 3] [0 , 4 , 2] [ − 1 , 0 , 7] 1 [2 , − 2 , 6] [3 , 2 , 1] [1 , 3 , 2] [ − 1 , 4 , 3] [0 , − 1 , 7] 13 [ − 2 , 2 , 6] [3 , 1 , 2] [ − 1 , 3 , 4] [4 , − 1 , 3] 4 [6 , 2 , − 2] [ − 2 , 6 , 2] [ − 1 , 1 , 6] [3 , − 1 , 4] [4 , 3 , − 1] [ − 4 , 7 , 3] 17 [ − 1 , 6 , 1] [1 , − 1 , 6] [3 , 4 , − 1] 7 10 [6 , 1 , − 1] [ − 4 , 6 , 4] 10 20 [1 , − 4 , 9] 13 7 16 20 17 14 11 8 5 2 1 4 Robin Sulzgruber On (rational) Shi tableaux March 2017 10 / 33

  7. Inverse Shi alcoves Robin Sulzgruber On (rational) Shi tableaux March 2017 11 / 33

  8. Inverse Shi alcoves Theorem (Fishel, Vazirani 2010) The regions of the m -Shi arrangement are in bijection with the alcoves inside the simplex bounded by the hyperplanes of height mh + 1. Robin Sulzgruber On (rational) Shi tableaux March 2017 11 / 33

  9. Inverse Shi alcoves Theorem (Fishel, Vazirani 2010) The regions of the m -Shi arrangement are in bijection with the alcoves inside the simplex bounded by the hyperplanes of height mh + 1. 16 13 10 7 4 1 2 5 11 16 8 8 [1 , 5 , 0] 5 [1 , 0 , 5] 13 [0 , 1 , 5] [2 , 0 , 4] 2 [2 , 1 , 3] [0 , 2 , 4] 11 [2 , 3 , 1] [1 , 2 , 3] [0 , 4 , 2] 1 [3 , 2 , 1] [1 , 3 , 2] [ − 1 , 4 , 3] 10 [ − 2 , 2 , 6] [3 , 1 , 2] [ − 1 , 3 , 4] [4 , − 1 , 3] 4 14 7 14 11 8 5 2 1 4 7 Robin Sulzgruber On (rational) Shi tableaux March 2017 11 / 33

  10. Robin Sulzgruber On (rational) Shi tableaux March 2017 12 / 33

  11. 22 19 16 13 10 7 4 1 2 5 17 22 14 8 [1 , 8 , − 3] 11 [1 , − 3 , 8] 19 [ − 3 , 1 , 8] [5 , − 3 , 4] 8 [5 , 1 , 0] [ − 3 , 5 , 4] 11 [5 , 0 , 1] [1 , 5 , 0] [ − 3 , 4 , 5] 5 [0 , 5 , 1] [1 , 0 , 5] [2 , 4 , 0] 16 [ − 2 , 5 , 3] [0 , 1 , 5] [2 , 0 , 4] [4 , 2 , 0] 2 [ − 2 , 3 , 5] [2 , 1 , 3] [0 , 2 , 4] [4 , 0 , 2] 14 [3 , − 2 , 5] [2 , 3 , 1] [1 , 2 , 3] [0 , 4 , 2] [ − 1 , 0 , 7] 1 [2 , − 2 , 6] [3 , 2 , 1] [1 , 3 , 2] [ − 1 , 4 , 3] [0 , − 1 , 7] 13 [2 , 6 , − 2] [ − 2 , 2 , 6] [3 , 1 , 2] [ − 1 , 3 , 4] [4 , − 1 , 3] [0 , 7 , − 1] 4 [6 , 2 , − 2] [ − 2 , 6 , 2] [ − 1 , 1 , 6] [3 , − 1 , 4] [4 , 3 , − 1] [ − 4 , 7 , 3] 17 [ − 5 , 2 , 9] [6 , − 2 , 2] [ − 1 , 6 , 1] [1 , − 1 , 6] [3 , 4 , − 1] [ − 4 , 3 , 7] [7 , − 4 , 3] 7 10 10 17 14 11 8 5 2 1 4 7 Robin Sulzgruber On (rational) Shi tableaux March 2017 12 / 33

  12. A rational analogue Robin Sulzgruber On (rational) Shi tableaux March 2017 13 / 33

  13. A rational analogue Definition Let p be a positive integer relatively prime to the Coxeter number h . An alcove is called p -stable if its inverse lies inside the simplex bounded by the hyperplanes of height p . Robin Sulzgruber On (rational) Shi tableaux March 2017 13 / 33

  14. A rational analogue Definition Let p be a positive integer relatively prime to the Coxeter number h . An alcove is called p -stable if its inverse lies inside the simplex bounded by the hyperplanes of height p . Theorem (Thiel 2015) The number of p -stable alcoves equals p r . The number of dominant p -stable alcoves equals � r 1 ( p + e i ) . | W | i =1 Robin Sulzgruber On (rational) Shi tableaux March 2017 13 / 33

  15. Robin Sulzgruber On (rational) Shi tableaux March 2017 14 / 33

  16. 13 10 7 4 1 2 5 8 8 5 [5 , − 2 , 3] [0 , 5 , 1] [1 , 0 , 5] [2 , 4 , 0] [ − 3 , 2 , 7] 13 [ − 2 , 5 , 3] [0 , 1 , 5] [2 , 0 , 4] [4 , 2 , 0] 2 [ − 2 , 3 , 5] [2 , 1 , 3] [0 , 2 , 4] [4 , 0 , 2] 11 [2 , 3 , 1] [1 , 2 , 3] [0 , 4 , 2] 1 [3 , 2 , 1] [1 , 3 , 2] [ − 1 , 4 , 3] 10 [3 , 1 , 2] [ − 1 , 3 , 4] 4 [ − 1 , 1 , 6] [3 , − 1 , 4] 14 [1 , − 1 , 6] 7 [1 , 6 , − 1] 7 10 17 13 17 14 11 8 5 2 1 4 Robin Sulzgruber On (rational) Shi tableaux March 2017 14 / 33

  17. Robin Sulzgruber On (rational) Shi tableaux March 2017 15 / 33

  18. 16 13 10 7 4 1 2 5 11 16 8 8 [1 , 5 , 0] 5 [5 , − 2 , 3] [0 , 5 , 1] [1 , 0 , 5] [2 , 4 , 0] [ − 3 , 2 , 7] 13 [0 , 1 , 5] [2 , 0 , 4] 2 [ − 2 , 3 , 5] [2 , 1 , 3] [0 , 2 , 4] [4 , 0 , 2] 11 [2 , 3 , 1] [1 , 2 , 3] [0 , 4 , 2] 1 [3 , 2 , 1] [1 , 3 , 2] [ − 1 , 4 , 3] 10 [ − 2 , 2 , 6] [3 , 1 , 2] [ − 1 , 3 , 4] [4 , − 1 , 3] 4 [ − 1 , 1 , 6] [3 , − 1 , 4] 14 7 [1 , 6 , − 1] 7 10 17 13 17 14 11 8 5 2 1 4 Robin Sulzgruber On (rational) Shi tableaux March 2017 15 / 33

  19. Shi tableaux Robin Sulzgruber On (rational) Shi tableaux March 2017 16 / 33

  20. Shi tableaux Definition (Fishel, Tzanaki, Vazirani 2011) Let w ( A ◦ ) be a dominant Shi alcove and α ∈ Φ + . Define t mh +1 ( α, w ) as the number of Shi hyperplanes of the form H α, k that separate w ( A ◦ ) and A ◦ . Robin Sulzgruber On (rational) Shi tableaux March 2017 16 / 33

  21. Shi tableaux Definition (Fishel, Tzanaki, Vazirani 2011) Let w ( A ◦ ) be a dominant Shi alcove and α ∈ Φ + . Define t mh +1 ( α, w ) as the number of Shi hyperplanes of the form H α, k that separate w ( A ◦ ) and A ◦ . The Shi tableau of w is the collection of the numbers t mh +1 ( α, w ) for α ∈ Φ + . Robin Sulzgruber On (rational) Shi tableaux March 2017 16 / 33

  22. Shi tableaux Definition (Fishel, Tzanaki, Vazirani 2011) Let w ( A ◦ ) be a dominant Shi alcove and α ∈ Φ + . Define t mh +1 ( α, w ) as the number of Shi hyperplanes of the form H α, k that separate w ( A ◦ ) and A ◦ . The Shi tableau of w is the collection of the numbers t mh +1 ( α, w ) for α ∈ Φ + . [2 , 0 , 4] [4 , 2 , 0] [0 , 2 , 4] [1 , 2 , 3] [0 , 4 , 2] Robin Sulzgruber On (rational) Shi tableaux March 2017 16 / 33

  23. Shi tableaux Definition (Fishel, Tzanaki, Vazirani 2011) Let w ( A ◦ ) be a dominant Shi alcove and α ∈ Φ + . Define t mh +1 ( α, w ) as the number of Shi hyperplanes of the form H α, k that separate w ( A ◦ ) and A ◦ . The Shi tableau of w is the collection of the numbers t mh +1 ( α, w ) for α ∈ Φ + . w = [4 , 2 , 0] [2 , 0 , 4] [4 , 2 , 0] [0 , 2 , 4] [1 , 2 , 3] [0 , 4 , 2] Robin Sulzgruber On (rational) Shi tableaux March 2017 16 / 33

  24. Shi tableaux Definition (Fishel, Tzanaki, Vazirani 2011) Let w ( A ◦ ) be a dominant Shi alcove and α ∈ Φ + . Define t mh +1 ( α, w ) as the number of Shi hyperplanes of the form H α, k that separate w ( A ◦ ) and A ◦ . The Shi tableau of w is the collection of the numbers t mh +1 ( α, w ) for α ∈ Φ + . w = [4 , 2 , 0] [2 , 0 , 4] [4 , 2 , 0] t 4 ( α 1 , w ) = 1 [0 , 2 , 4] [1 , 2 , 3] [0 , 4 , 2] Robin Sulzgruber On (rational) Shi tableaux March 2017 16 / 33

  25. Shi tableaux Definition (Fishel, Tzanaki, Vazirani 2011) Let w ( A ◦ ) be a dominant Shi alcove and α ∈ Φ + . Define t mh +1 ( α, w ) as the number of Shi hyperplanes of the form H α, k that separate w ( A ◦ ) and A ◦ . The Shi tableau of w is the collection of the numbers t mh +1 ( α, w ) for α ∈ Φ + . w = [4 , 2 , 0] [2 , 0 , 4] [4 , 2 , 0] t 4 ( α 1 , w ) = 1 [0 , 2 , 4] t 4 ( α 2 , w ) = 1 [1 , 2 , 3] [0 , 4 , 2] Robin Sulzgruber On (rational) Shi tableaux March 2017 16 / 33

  26. Shi tableaux Definition (Fishel, Tzanaki, Vazirani 2011) Let w ( A ◦ ) be a dominant Shi alcove and α ∈ Φ + . Define t mh +1 ( α, w ) as the number of Shi hyperplanes of the form H α, k that separate w ( A ◦ ) and A ◦ . The Shi tableau of w is the collection of the numbers t mh +1 ( α, w ) for α ∈ Φ + . w = [4 , 2 , 0] [2 , 0 , 4] [4 , 2 , 0] t 4 ( α 1 , w ) = 1 [0 , 2 , 4] t 4 ( α 2 , w ) = 1 [1 , 2 , 3] [0 , 4 , 2] t 4 ( α 1 + α 2 , w ) = 1 Robin Sulzgruber On (rational) Shi tableaux March 2017 16 / 33

  27. Rational Shi tableaux Robin Sulzgruber On (rational) Shi tableaux March 2017 17 / 33

  28. Rational Shi tableaux Definition Let w ( A ◦ ) be dominant and p -stable and α ∈ Φ + . Define t p ( α, w ) as the number of hyperplanes of the form H α, k with height less than p that separate w ( A ◦ ) and A ◦ . Robin Sulzgruber On (rational) Shi tableaux March 2017 17 / 33

  29. Rational Shi tableaux Definition Let w ( A ◦ ) be dominant and p -stable and α ∈ Φ + . Define t p ( α, w ) as the number of hyperplanes of the form H α, k with height less than p that separate w ( A ◦ ) and A ◦ . The rational Shi tableau of w is defined as the collection of numbers t p ( α, w ) for α ∈ Φ + . Robin Sulzgruber On (rational) Shi tableaux March 2017 17 / 33

  30. Rational Shi tableaux Definition Let w ( A ◦ ) be dominant and p -stable and α ∈ Φ + . Define t p ( α, w ) as the number of hyperplanes of the form H α, k with height less than p that separate w ( A ◦ ) and A ◦ . The rational Shi tableau of w is defined as the collection of numbers t p ( α, w ) for α ∈ Φ + . 7 4 1 2 5 8 8 5 [2 , 4 , 0] [ − 3 , 2 , 7] 13 [2 , 0 , 4] 2 [0 , 2 , 4] [4 , 0 , 2] 11 [1 , 2 , 3] [0 , 4 , 2] 1 10 4 5 2 1 4 7 Robin Sulzgruber On (rational) Shi tableaux March 2017 17 / 33

  31. Rational Shi tableaux Definition Let w ( A ◦ ) be dominant and p -stable and α ∈ Φ + . Define t p ( α, w ) as the number of hyperplanes of the form H α, k with height less than p that separate w ( A ◦ ) and A ◦ . The rational Shi tableau of w is defined as the collection of numbers t p ( α, w ) for α ∈ Φ + . 7 4 1 2 5 8 8 w = [ − 3 , 2 , 7] 5 [2 , 4 , 0] [ − 3 , 2 , 7] 13 [2 , 0 , 4] 2 [0 , 2 , 4] [4 , 0 , 2] 11 [1 , 2 , 3] [0 , 4 , 2] 1 10 4 5 2 1 4 7 Robin Sulzgruber On (rational) Shi tableaux March 2017 17 / 33

  32. Rational Shi tableaux Definition Let w ( A ◦ ) be dominant and p -stable and α ∈ Φ + . Define t p ( α, w ) as the number of hyperplanes of the form H α, k with height less than p that separate w ( A ◦ ) and A ◦ . The rational Shi tableau of w is defined as the collection of numbers t p ( α, w ) for α ∈ Φ + . 7 4 1 2 5 8 8 w = [ − 3 , 2 , 7] 5 [2 , 4 , 0] [ − 3 , 2 , 7] 13 [2 , 0 , 4] 2 t 5 ( α 1 , w ) = 1 [0 , 2 , 4] [4 , 0 , 2] 11 [1 , 2 , 3] [0 , 4 , 2] 1 10 4 5 2 1 4 7 Robin Sulzgruber On (rational) Shi tableaux March 2017 17 / 33

  33. Rational Shi tableaux Definition Let w ( A ◦ ) be dominant and p -stable and α ∈ Φ + . Define t p ( α, w ) as the number of hyperplanes of the form H α, k with height less than p that separate w ( A ◦ ) and A ◦ . The rational Shi tableau of w is defined as the collection of numbers t p ( α, w ) for α ∈ Φ + . 7 4 1 2 5 8 8 w = [ − 3 , 2 , 7] 5 [2 , 4 , 0] [ − 3 , 2 , 7] 13 [2 , 0 , 4] 2 t 5 ( α 1 , w ) = 1 [0 , 2 , 4] [4 , 0 , 2] 11 t 5 ( α 2 , w ) = 1 [1 , 2 , 3] [0 , 4 , 2] 1 10 4 5 2 1 4 7 Robin Sulzgruber On (rational) Shi tableaux March 2017 17 / 33

  34. Rational Shi tableaux Definition Let w ( A ◦ ) be dominant and p -stable and α ∈ Φ + . Define t p ( α, w ) as the number of hyperplanes of the form H α, k with height less than p that separate w ( A ◦ ) and A ◦ . The rational Shi tableau of w is defined as the collection of numbers t p ( α, w ) for α ∈ Φ + . 7 4 1 2 5 8 8 w = [ − 3 , 2 , 7] 5 [2 , 4 , 0] [ − 3 , 2 , 7] 13 [2 , 0 , 4] 2 t 5 ( α 1 , w ) = 1 [0 , 2 , 4] [4 , 0 , 2] 11 t 5 ( α 2 , w ) = 1 [1 , 2 , 3] [0 , 4 , 2] 1 10 t 5 ( α 1 + α 2 , w ) = 2 4 5 2 1 4 7 Robin Sulzgruber On (rational) Shi tableaux March 2017 17 / 33

  35. The Main Conjecture Robin Sulzgruber On (rational) Shi tableaux March 2017 18 / 33

  36. The Main Conjecture Conjecture Every dominant p -stable element w ∈ � W is uniquely determined by its rational Shi tableau. Robin Sulzgruber On (rational) Shi tableaux March 2017 18 / 33

  37. The Main Conjecture Conjecture Every dominant p -stable element w ∈ � W is uniquely determined by its rational Shi tableau. Theorem The conjecture is true in type A n − 1 . Robin Sulzgruber On (rational) Shi tableaux March 2017 18 / 33

  38. The Main Conjecture Conjecture Every dominant p -stable element w ∈ � W is uniquely determined by its rational Shi tableau. Theorem The conjecture is true in type A n − 1 . Open Problem Characterise the set of rational Shi tableaux. Robin Sulzgruber On (rational) Shi tableaux March 2017 18 / 33

  39. Inverting the rational Shi tableau in type A n − 1 Robin Sulzgruber On (rational) Shi tableaux March 2017 19 / 33

  40. Inverting the rational Shi tableau in type A n − 1 Example Consider the affine permutation of type A 4 w = [7 , − 1 , 11 , 3 , − 5] . Robin Sulzgruber On (rational) Shi tableaux March 2017 19 / 33

  41. Inverting the rational Shi tableau in type A n − 1 Example Consider the affine permutation of type A 4 w = [7 , − 1 , 11 , 3 , − 5] . Then the alcove of w − 1 is contained in the simplex bounded by the hyperplanes of height p = 8. Robin Sulzgruber On (rational) Shi tableaux March 2017 19 / 33

  42. Inverting the rational Shi tableau in type A n − 1 Example Consider the affine The Shi tableau of w is given by permutation of type A 4 2 1 2 1 α 15 α 25 α 35 α 45 w = [7 , − 1 , 11 , 3 , − 5] . 1 2 0 α 14 α 24 α 34 2 1 Then the alcove of w − 1 is α 13 α 23 contained in the simplex bounded 0 α 12 by the hyperplanes of height p = 8. Robin Sulzgruber On (rational) Shi tableaux March 2017 19 / 33

  43. To Dyck paths via row-sums and column-sums 2 1 2 1 α 15 α 25 α 35 α 45 1 2 0 α 14 α 24 α 34 2 1 α 13 α 23 0 α 12 Robin Sulzgruber On (rational) Shi tableaux March 2017 20 / 33

  44. To Dyck paths via row-sums and column-sums 2 1 2 1 α 15 α 25 α 35 α 45 1 2 0 α 14 α 24 α 34 2 1 α 13 α 23 0 α 12 Robin Sulzgruber On (rational) Shi tableaux March 2017 20 / 33

  45. To long cycles (Ceballos, Denton, Hanusa 2016) Robin Sulzgruber On (rational) Shi tableaux March 2017 21 / 33

  46. To long cycles (Ceballos, Denton, Hanusa 2016) 12 13 11 8 9 10 13 7 12 11 6 10 3 4 5 9 2 7 8 6 1 5 4 1 2 3 Robin Sulzgruber On (rational) Shi tableaux March 2017 21 / 33

  47. To long cycles (Ceballos, Denton, Hanusa 2016) 12 13 11 8 9 10 13 7 12 11 6 10 3 4 5 9 2 7 8 6 1 5 4 1 2 3 (4 , 2 , 6 , 9 , 7 , 11 , 13 , 12 , 10 , 8 , 5 , 3 , 1) Robin Sulzgruber On (rational) Shi tableaux March 2017 21 / 33

  48. Back to Dyck paths (Ceballos, Denton, Hanusa 2016) Robin Sulzgruber On (rational) Shi tableaux March 2017 22 / 33

  49. Back to Dyck paths (Ceballos, Denton, Hanusa 2016) (4 , 2 , 6 , 9 , 7 , 11 , 13 , 12 , 10 , 8 , 5 , 3 , 1) Robin Sulzgruber On (rational) Shi tableaux March 2017 22 / 33

  50. Back to Dyck paths (Ceballos, Denton, Hanusa 2016) (4 , 2 , 6 , 9 , 7 , 11 , 13 , 12 , 10 , 8 , 5 , 3 , 1) Robin Sulzgruber On (rational) Shi tableaux March 2017 22 / 33

  51. Back to Dyck paths (Ceballos, Denton, Hanusa 2016) (4 , 2 , 6 , 9 , 7 , 11 , 13 , 12 , 10 , 8 , 5 , 3 , 1) Robin Sulzgruber On (rational) Shi tableaux March 2017 22 / 33

  52. To n and p flush abaci (Anderson 2002) Robin Sulzgruber On (rational) Shi tableaux March 2017 23 / 33

  53. To n and p flush abaci (Anderson 2002) Robin Sulzgruber On (rational) Shi tableaux March 2017 23 / 33

  54. To n and p flush abaci (Anderson 2002) 40 35 30 25 20 15 10 5 0 32 27 22 17 12 7 2 -3 -8 24 19 14 9 4 -1 -6 -11 -16 16 11 6 1 -4 -9 -14 -19 -24 8 3 -2 -7 -12 -17 -22 -27 -32 0 -5 -10 -15 -20 -25 -30 -35 -40 Robin Sulzgruber On (rational) Shi tableaux March 2017 23 / 33

  55. To n and p flush abaci (Anderson 2002) 40 35 30 25 20 15 10 5 0 32 27 22 17 12 7 2 -3 -8 24 19 14 9 4 -1 -6 -11 -16 16 11 6 1 -4 -9 -14 -19 -24 8 3 -2 -7 -12 -17 -22 -27 -32 0 -5 -10 -15 -20 -25 -30 -35 -40 Robin Sulzgruber On (rational) Shi tableaux March 2017 23 / 33

  56. To n and p flush abaci (Anderson 2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -14 -13 -12 -11 -10 40 35 30 25 20 15 10 5 0 -9 -8 -7 -6 -5 32 27 22 17 12 7 2 -3 -8 -4 -3 -2 -1 0 24 19 14 9 4 -1 -6 -11 -16 1 2 4 3 5 16 11 6 1 -4 -9 -14 -19 -24 6 7 9 8 10 8 3 -2 -7 -12 -17 -22 -27 -32 12 11 13 14 15 0 -5 -10 -15 -20 -25 -30 -35 -40 17 16 18 19 20 21 22 23 24 25 . . . . . . . . . . . . . . . Robin Sulzgruber On (rational) Shi tableaux March 2017 23 / 33

  57. Shift back to affine permutations (Lascoux 2001) Robin Sulzgruber On (rational) Shi tableaux March 2017 24 / 33

  58. Shift back to affine permutations (Lascoux 2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 4 3 5 6 7 9 8 10 12 11 13 14 15 17 16 18 19 20 21 22 23 24 25 . . . . . . . . . . . . . . . Robin Sulzgruber On (rational) Shi tableaux March 2017 24 / 33

  59. Shift back to affine permutations (Lascoux 2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -14 -13 -12 -11 -10 -19 -18 -17 -16 -15 -9 -8 -7 -6 -5 -14 -13 -12 -11 -10 -4 -3 -2 -1 -9 -8 -6 -5 0 -7 1 2 4 -3 -1 0 3 5 -4 -2 6 7 9 2 5 8 10 1 3 4 12 10 11 13 14 15 6 7 8 9 17 16 18 19 20 11 12 13 14 15 21 22 23 24 25 16 17 18 19 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Robin Sulzgruber On (rational) Shi tableaux March 2017 24 / 33

  60. Shift back to affine permutations (Lascoux 2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -14 -13 -12 -11 -10 -19 -18 -17 -16 -15 -9 -8 -7 -6 -5 -14 -13 -12 -11 -10 -4 -3 -2 -1 -9 -8 -6 -5 0 -7 w − 1 = [ − 7 , − 4 , 4 , 7 , 15] 1 2 4 -3 -1 0 3 5 -4 -2 6 7 9 2 5 8 10 1 3 4 12 10 11 13 14 15 6 7 8 9 17 16 18 19 20 11 12 13 14 15 21 22 23 24 25 16 17 18 19 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Robin Sulzgruber On (rational) Shi tableaux March 2017 24 / 33

  61. Shift back to affine permutations (Lascoux 2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -14 -13 -12 -11 -10 -19 -18 -17 -16 -15 -9 -8 -7 -6 -5 -14 -13 -12 -11 -10 -4 -3 -2 -1 -9 -8 -6 -5 0 -7 w − 1 = [ − 7 , − 4 , 4 , 7 , 15] 1 2 4 -3 -1 0 3 5 -4 -2 w = [7 , − 1 , 11 , 3 , − 5] 6 7 9 2 5 8 10 1 3 4 12 10 11 13 14 15 6 7 8 9 17 16 18 19 20 11 12 13 14 15 21 22 23 24 25 16 17 18 19 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Robin Sulzgruber On (rational) Shi tableaux March 2017 24 / 33

  62. This is the end. Thank you! Robin Sulzgruber On (rational) Shi tableaux March 2017 25 / 33

  63. nl. Hl. h;3 * l;, r,ii," * [l-, 11 H,r,-, .r/ 4/ Shi coordinates Robin Sulzgruber On (rational) Shi tableaux March 2017 26 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend