riesz transforms on group von neumann algebras
play

Riesz transforms on group von Neumann algebras Tao Mei Wayne State - PowerPoint PPT Presentation

Riesz transforms on group von Neumann algebras Tao Mei Wayne State University Wuhan Joint work with M. Junge and J. Parcet June 17, 2014 Classical Riesz transform f L 2 ( R n ), R = 1 2 . with ) , = 2 2


  1. Riesz transforms on group von Neumann algebras Tao Mei Wayne State University Wuhan Joint work with M. Junge and J. Parcet June 17, 2014

  2. Classical Riesz transform f ∈ L 2 ( R n ), R = ∂ △ − 1 2 . with � ) , △ = − ∂ 2 ∂ 2 ∂ = ( ∂ , · · ∂ , · · ∂ ∂ x 2 = ∂ x 2 ∂ x 1 ∂ x j ∂ x n j j Rf = ( R 1 f , R 2 f , · · · R n f ) with R i = ∂ i ∆ − 1 2 the i − th Riesz transform, R i f ( ξ ) = c ξ i � � f ( ξ ) , ξ ∈ R n . | ξ | (Riesz; Stein/Meyer-Bakry/Pisier/Gundy/Varopoulos and many others) � 1 | R j f | 2 ) 2 � p ≃ � f � p , 1 < p < ∞ , � ( j 1 2 f � p , 1 < p < ∞ , � ∂ f � p ≃ � ∆

  3. Carr´ e du Champ—P. A. Meyer’s Gradient form ∆ = − ∂ 2 x on ( R , dx ); Chain rule: − ∆( f 1 f 2 ) + (∆ f 1 ) f 2 + f 1 ∆ f 2 = 2 ∂ f 1 ∂ f 2 . Given a generator of a Markov semigroup L (e.g. an elliptic operator), set − L ( f ∗ 1 f 2 ) + L ( f ∗ 1 ) f 2 + f ∗ 2Γ( f 1 , f 2 ) = 1 L ( f 2 ); Γ( L − 1 2 f , L − 1 | R L ( f ) | 2 2 f ) =

  4. Semiclassical Riesz transform —Markov Semigroups of Operators ( M , µ ): Sigma finite measure space, ( S t ) t ≥ 0 : a semigroup of operators on L ∞ ( M ) We say ( S t ) t is Markov, if ◮ S t are contractions on L ∞ ( M , µ ). ◮ S t are symmetric i.e. � S t f , g � = � f , S t g � for f , g ∈ L 1 ( M ) ∩ L ∞ ( M ). ◮ S t (1) = 1 ◮ S t ( f ) → f in the w ∗ topology for f ∈ L ∞ ( M ) . Infinitesimal generator: L = − ∂ S t ∂ t | t =0 ; S t = e − tL . More general case: L ∞ ( M ) replaced by semi finite von Neuman algebras. Abstract theories by E. Stein, Cowling, Mcintoch...., Junge/Xu, Le Merdy-Junge-Xu.

  5. Examples, P. A. Meyer’s Gradient form ◮ L = ∆: Laplace-Betrami operator Γ( f , f ) = |∇ f | 2 . ◮ ( M , dx ): complete Riemannian manifold. Lf ( x ) = � i , j a ij ( x ) ∂ i ∂ j f + � i g i ( x ) ∂ i f . Γ( f , f ) = � i , j a i , j ∂ i f ∂ j f . 1 2 , S t = e − tL on R n . ◮ L = ∆ � ∞ 0 |∇ S t f | 2 + | ∂ t S t f | 2 dt . Γ( f , f ) = ◮ G = F 2 : the free group of two generaters. L : λ g �→ | g | λ g , with | g | the word length of g ∈ F 2 . Γ( λ g , λ h ) = | g | + | h |−| g − 1 h | λ g − 1 h . 2 P. A. Meyer’s question When do we have 1 � Γ( f , f ) � 2 2 f � L p ? 2 ≃ � L ( ∗ ) L p

  6. Semiclassical Riesz transform—P.A. Meyer’s question Theorem (D.Bakry for diffusion S t 1986;) Assume L generates a diffusion Markov semigroup (on commutative L p spaces) satisfying Γ 2 ≥ 0, then 1 � Γ( f , f ) � 2 2 f � L p 2 ≃ � L L p holds for any 1 < p < ∞ . Γ( f , f ) ≥ 0 iff | S t f | 2 ≤ S t | f | 2 for S t = e − tL . Γ 2 ≥ 0 means Γ 2 ( f , f ) = − L Γ( f , f ) + Γ( Lf , f ) + Γ( f , Lf ) ≥ 0 . P. A. Meyer, D. Bakry, M. Emery, X. D. Li, F. Baudoin-N. Garofalo, etc. (Γ 2 ≥ 0 ⇔ CD (0 , ∞ ) criterion ⇔ 2 S t | S t f | 2 ≤ S 2 t | f | 2 + | S 2 t f | 2 .)

  7. Fractional power of ∆ 1 2 on R n . P. A. Meyer’s inequality (*) Fails for L = ∆ 2 n n +1 , and any Schwarz function f on R n , For p ≤ � Γ( f , f ) � L 2 = ∞ p while 1 2 f � L p < ∞ . � L

  8. Noncommutative extension Theorem (Junge;Junge/M noncommutative S t 2010;) Assume L generates a noncommutative Markov semigroup on a semi finite von Neumann algebra M satisfying Γ 2 ≥ 0, then 1 2 f � L p ( M ) ≤ c p max {� Γ( f , f ) � 2 2 ( M ) , � Γ( f ∗ , f ∗ ) � 2 � L 2 ( M ) } L p L p for any 2 ≤ p < ∞ . 1 � f � L p ( M ) = ( τ | f | p ) p . Application to M. Rieffel’s quantumn metric spaces;.. Question: Can we get an equivalence for all 1 < p < ∞ ?

  9. Riesz transforms via cocycles G : discrete (abelian) group ( b , α, H ): cocycle of group actions on Hilbert space H , i.e. b : G �→ H , α : G �→ Aut ( H ) , α g b ( g − 1 h ) = b ( h ) − b ( g ) v k : orthonormal basis of H . L : λ g �→ � b ( g ) � 2 λ g generates a Markov semigroup on L ∞ ( � G ). � b ( g ) � 2 + � b ( h ) � 2 − � b ( g − 1 h ) � 2 Γ( λ g , λ h ) = λ g − 1 h 2 = � b ( g ) , b ( h ) � λ g − 1 h 2 f ) = � | R L ( f ) | 2 = Γ( L − 1 2 f , L − 1 k | R k ( f ) | 2 with R k : λ g → � b ( g ) , v k � � b ( g ) � λ g .

  10. Semiclassical Riesz transform—Examples ◮ G = R n ( b , α, H ) = ( id , id , R n ). L = ∆: e i � ξ, ·� → −| ξ | 2 e i � ξ, ·� . R k = ∂ k ∆ − 1 2 . ◮ Let G = F 2 : the free group generated by { h 1 , h 2 } . Λ = { δ g − δ g − ; g ∈ G } ⊂ ℓ 2 ( G ) H = ℓ 2 (Λ). b : g → δ g − δ e ∈ H . � b ( g ) � 2 = | g | , with | g | the word length of g ∈ F 2 . S t : λ g → e − t | g | λ g . | R L · | 2 = � k | R k · | 2 with R k : λ g → � b ( g ) , v k � λ g . 1 | g | 2 Let v 1 = δ h 1 − δ e , v 2 = δ h 2 − δ e , v 3 = δ h − 1 1 − δ e , v 4 = δ h − 1 2 − δ e , 1 R 1 + R 2 + R 3 + R 4 : λ g → λ g , g � = e 1 | g | 2

  11. P. A. Meyer’s question revisited P. A. Meyer’s question G : (discrete) abelian group. � 1 | R k ( f ) | 2 ) 2 � L p (ˆ � ( ≃ � f � L p (ˆ G ) ? G ) � � R k ( f ) γ k � L p (Ω × ˆ ≃ � f � L p (ˆ G ) ? G ) k 1 2 . Fails for R k correspondence to ∆ Recall G acts on H ≃ L 2 (Ω). Revision of the question � � R k ( f ) ⋊ γ k � L p ( G ⋊ L ∞ (Ω)) ≃ � f � L p (ˆ G ) ? k Yes! Junge/M/Parcet 2014

  12. L p Fourier multipliers on Discrete Groups e.g. G = Z , F 2 , G : (nonabelian) discrete group. δ g , g ∈ G : the canonical basis of ℓ 2 ( G ). λ g : left regular representation of G on ℓ 2 ( G ), λ g ( δ h ) = δ gh , for g , h ∈ G . G ): the w ∗ closure of Span { λ g } ’s in B ( ℓ 2 ( G )). L ∞ (ˆ Example: G = Z , λ k = e ik θ , L ∞ (ˆ G ) = L ∞ ( T ). τ : For f = � g f g λ g , τ f = f e . 1 G ) = [ τ ( | f | p )] p , 1 ≤ p < ∞ . || f || L p ( � � Example: G = Z , τ f = ˆ f , L p (ˆ f (0) = G ) = L p ( T ). Question Find (nontrivial) L p ( � G )(1 < p < ∞ ) bounded multipliers T m : λ g → m ( g ) λ g .

  13. L p bound of Riesz transforms via cocycles Theorem ( Junge/M/Parcet, 2014) For any discrete group G with a cocycle ( b , H , α ), we have � � 1 1 | R k f | 2 ) | R k f ∗ | 2 ) 2 � L p ( � 2 � L p ( � � ( G ) + � ( G ) ≃ � f � L p ( � G ) , k k for any p ≥ 2. And � � � � 1 2 � � � � � 1 2 � � � � � � b j � a ∗ b ∗ � f � L p ( � G ) ≃ inf G ) + � j a j � � � G ) , j L p ( � L p ( � R j f = a j + b j j ≥ 1 j ≥ 1 for any 1 < p < 2. The equivalence constant only depends on p . Pisier’s method+Khintchine inequality for crossed products. � b j is a twist of b j coming from the Khintchine inequality for crossed products.

  14. Classical H¨ ormander-Mihlin multipliers are averages of Riesz transforms ◮ Let G = R n . | x | n +2 ε ). b : ξ ∈ R n → e i � ξ, ·� − 1 ∈ H . dx H = L 2 ( R n , � b ( ξ ) � 2 = | ξ | 2 ε , L = − ∆ ε : e i ξ x → −| ξ | 2 ε e i � ξ, x � . ◮ For v ∈ H , let R v : e i � ξ, x � → � b ( g ) , v � � b ( ξ ) � e i � ξ, x � . � ˆ � ˆ f ( ξ ) e i � ξ, x � → f ( ξ ) m ( ξ ) e i � ξ, x � d ξ , then Given T m : T m = R v with v ( x ) = | x | n +2 ε � m ( · ) | · | ε .

  15. H¨ ormander-Mihlin multipliers on a branch of free groups Given a branch B of G = F ∞ , let � 1 L p ( � G ) = ( τ | f | p ) p < ∞} . B ) = { f = a g λ g ; � f � L p ( � g ∈ B For m : Z + → C , let � T m f = m ( g ) a g λ g . g ∈ B Theorem ( Junge/M/Parcet, 2014) Suppose m : Z + → C satisfies sup | m ( j ) | + j | m ( j ) − m ( j − 1) | < c j ≥ 1 then � T m f � L p ( � G ) � c ( p ) c � f � L p ( � G ) for any f ∈ L p ( � B ) .

  16. Littlewood-Paley estimates. Theorem ( Junge/M /Parcet, 2014) Consider a standard Littlewood-Paley partition of unity ( ϕ j ) j ≥ 1 in R + . Let � Λ j : λ ( g ) �→ ϕ j ( | g | ) λ ( g ) denote the corresponding radial multipliers in L ( F ∞ ). Then, the following estimates hold for f ∈ L p ( � B ) and 1 < p < 2 � 2 � � � � 1 � � j a j + � b j � a ∗ b ∗ inf � � G ) � c ( p ) � f � L p ( � G ) , j L p ( � Λ j f = a j + b j j ≥ 1 � � � � 1 2 � � � a ∗ j a j + b j b ∗ � f � L p ( � G ) � c ( p ) inf � � G ) . j L p ( � Λ j f = a j + b j j ≥ 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend