solvability of matrix exponential equations
play

Solvability of Matrix-Exponential Equations Jol Ouaknine, Amaury - PowerPoint PPT Presentation

Solvability of Matrix-Exponential Equations Jol Ouaknine, Amaury Pouly, Joo Sousa-Pinto, James Worrell University of Oxford July 8, 2016 Related work in the discrete case Input: A , C Q d d matrices Output: n N such that A n


  1. Solvability of Matrix-Exponential Equations Joël Ouaknine, Amaury Pouly, João Sousa-Pinto, James Worrell University of Oxford July 8, 2016

  2. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? Example: ∃ n ∈ N such that � n � � � 1 1 1 100 = ? 0 1 0 1

  3. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Example: ∃ n ∈ N such that � n � � � 1 1 1 100 = ? 0 1 0 1

  4. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ n , m ∈ N such that A n B m = C ? Example: ∃ n , m ∈ N such that � n � 1 � m � � � 1 2 3 1 60 2 2 = ? 0 1 0 1 0 1

  5. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ n , m ∈ N such that A n B m = C ? � Decidable Example: ∃ n , m ∈ N such that � n � 1 � m � � � 1 2 3 1 60 2 2 = ? 0 1 0 1 0 1

  6. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ n , m ∈ N such that A n B m = C ? � Decidable Input: A 1 , . . . , A k , C ∈ Q d × d matrices i =1 A n i Output: ∃ n 1 , . . . , n k ∈ N such that � k i = C ? Example: ∃ n , m , p ∈ N such that � n � 1 � m � � p � � � 1 2 3 2 5 81 260 2 2 = ? 0 1 0 1 0 1 0 1

  7. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ n , m ∈ N such that A n B m = C ? � Decidable Input: A 1 , . . . , A k , C ∈ Q d × d matrices i =1 A n i Output: ∃ n 1 , . . . , n k ∈ N such that � k i = C ? � Decidable if A i commute × Undecidable in general Example: ∃ n , m , p ∈ N such that � n � 1 � m � � p � � � 1 2 3 2 5 81 260 2 2 = ? 0 1 0 1 0 1 0 1

  8. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ n , m ∈ N such that A n B m = C ? � Decidable Input: A 1 , . . . , A k , C ∈ Q d × d matrices i =1 A n i Output: ∃ n 1 , . . . , n k ∈ N such that � k i = C ? � Decidable if A i commute × Undecidable in general Input: A 1 , . . . , A k , C ∈ Q d × d matrices Output: C ∈ � semi-group generated by A 1 , . . . , A k � ? Semi-group: � A 1 , . . . , A k � = all finite products of A 1 , . . . , A k Examples: A 8 3 A 2 A 3 1 A 42 A 1 A 3 A 2 A 1 A 2 A 1 A 2 3

  9. Related work in the discrete case Input: A , C ∈ Q d × d matrices Output: ∃ n ∈ N such that A n = C ? � Decidable (PTIME) Input: A , B , C ∈ Q d × d matrices Output: ∃ n , m ∈ N such that A n B m = C ? � Decidable Input: A 1 , . . . , A k , C ∈ Q d × d matrices i =1 A n i Output: ∃ n 1 , . . . , n k ∈ N such that � k i = C ? � Decidable if A i commute × Undecidable in general Input: A 1 , . . . , A k , C ∈ Q d × d matrices Output: C ∈ � semi-group generated by A 1 , . . . , A k � ? � Decidable if A i commute × Undecidable in general Semi-group: � A 1 , . . . , A k � = all finite products of A 1 , . . . , A k Examples: A 8 3 A 2 A 3 1 A 42 A 1 A 3 A 2 A 1 A 2 A 1 A 2 3

  10. Hybrid/Cyber-physical systems ◮ physics: continuous dynamics ◮ electronics: discrete states state continuous dynamics guard φ ( x ) x ′ = F 1 ( x ) x ′ = F 2 ( x ) x ← R ( x ) discrete update

  11. Hybrid/Cyber-physical systems ◮ physics: continuous dynamics ◮ electronics: discrete states state continuous dynamics guard φ ( x ) x ′ = F 1 ( x ) x ′ = F 2 ( x ) x ← R ( x ) discrete update Some classes: Typical questions ◮ F i ( x ) = 1: timed automata ◮ reachability ◮ F i ( x ) = c i : rectangular hybrid automata ◮ safety ◮ F i ( x ) = A i x : linear hybrid automata ◮ controllability

  12. Recap on linear differential equations Let x : R + → R n function, A ∈ Q n × n matrix x 1 ( t ) a 11 · · · a 1 n     . . . ... . . . x ( t ) = A =     . . .     x n ( t ) · · · a n 1 a nn Linear differential equation: x ′ ( t ) = Ax ( t ) x (0) = x 0

  13. Recap on linear differential equations Let x : R + → R n function, A ∈ Q n × n matrix x 1 ( t ) a 11 · · · a 1 n     . . . ... . . . x ( t ) = A =     . . .     x n ( t ) · · · a n 1 a nn Linear differential equation: x ′ ( t ) = Ax ( t ) x (0) = x 0 Examples: � x ′ 1 ( t )= x 2 ( t ) x ′ ( t ) = 7 x ( t ) x ′ 2 ( t )= − x 1 ( t ) ❀ x ( t ) = e 7 t � x 1 ( t )= sin( t ) ❀ x 2 ( t )= cos( t )

  14. Recap on linear differential equations Let x : R + → R n function, A ∈ Q n × n matrix x 1 ( t ) a 11 · · · a 1 n     . . . ... . . . x ( t ) = A =     . . .     x n ( t ) · · · a n 1 a nn Linear differential equation: x ′ ( t ) = Ax ( t ) x (0) = x 0 Examples: � ′ � � � � � � x ′ 1 ( t )= x 2 ( t ) 0 1 x 1 x 1 x ′ ( t ) = 7 x ( t ) ⇔ = x ′ 2 ( t )= − x 1 ( t ) x 2 − 1 0 x 2 ❀ x ( t ) = e 7 t � x 1 ( t )= sin( t ) ❀ x 2 ( t )= cos( t )

  15. Recap on linear differential equations Let x : R + → R n function, A ∈ Q n × n matrix x 1 ( t ) a 11 · · · a 1 n     . . . ... . . . x ( t ) = A =     . . .     x n ( t ) · · · a n 1 a nn Linear differential equation: x ′ ( t ) = Ax ( t ) x (0) = x 0 General solution form: x ( t ) = exp( At ) x 0 ∞ M n � where exp( M ) = n ! n =0

  16. Switching system x ′ = A 1 x x ′ = A 2 x Restricted hybrid system: ◮ linear dynamics ◮ no guards (nondeterministic) x ′ = A 4 x x ′ = A 3 x ◮ no discrete updates switch x 1 ( t ) t x ′ = A 1 x x ′ = A 2 x x ′ = A 3 x x ′ = A 4 x t 1 t 2 t 3 t 4

  17. Switching system x ′ = A 1 x x ′ = A 2 x Restricted hybrid system: ◮ linear dynamics ◮ no guards (nondeterministic) x ′ = A 4 x x ′ = A 3 x ◮ no discrete updates switch x 1 ( t ) t x ′ = A 1 x x ′ = A 2 x x ′ = A 3 x x ′ = A 4 x t 1 t 2 t 3 t 4 Dynamics: e A 4 t 4 e A 3 t 3 e A 2 t 2 e A 1 t 1

  18. Switching system x ′ = A 1 x x ′ = A 2 x Restricted hybrid system: ◮ linear dynamics ◮ no guards (nondeterministic) x ′ = A 4 x x ′ = A 3 x ◮ no discrete updates switch x 1 ( t ) t x ′ = A 1 x x ′ = A 2 x x ′ = A 3 x x ′ = A 4 x t 1 t 2 t 3 t 4 Problem: e A 4 t 4 e A 3 t 3 e A 2 t 2 e A 1 t 1 = C ? What we control: t 1 , t 2 , t 3 , t 4 ∈ R +

  19. Switching system x ′ = A 1 x x ′ = A 2 x What about a loop ? x ′ = A 4 x x ′ = A 3 x

  20. Switching system x ′ = A 1 x x ′ = A 2 x What about a loop ? x ′ = A 4 x x ′ = A 3 x x 1 ( t ) A 1 A 2 A 3 A 4 A 1 A 2 A 3 A 4 t t 1 t 2 t 3 t 4 t ′ t ′ t ′ t ′ 1 2 3 4 Dynamics: e A 4 t ′ 4 e A 3 t ′ 3 e A 2 t ′ 2 e A 1 t ′ 1 e A 4 t 4 e A 3 t 3 e A 2 t 2 e A 1 t 1

  21. Switching system x ′ = A 1 x x ′ = A 2 x Loop ⇔ clique x ′ = A 4 x x ′ = A 3 x x 1 ( t ) A 1 A 4 A 3 A 2 t t 1 t 4 t 3 t 2 t 2 = t 3 =0 t 1 = t 2 =0 t 4 = t 1 =0 Remark: zero time dynamics ( t i = 0) are allowed

  22. Switching system x ′ = A 1 x x ′ = A 2 x x ′ = A 4 x x ′ = A 3 x x 1 ( t ) A 1 A 4 A 3 A 2 t t 1 t 4 t 3 t 2 Dynamics: any finite product of e A i t semigroup! ❀

  23. Switching system x ′ = A 1 x x ′ = A 2 x x ′ = A 4 x x ′ = A 3 x x 1 ( t ) A 1 A 4 A 3 A 2 t t 1 t 4 t 3 t 2 Problem: C ∈ G ? where G = � semi-group generated by e A i t for all t � 0 �

  24. Main results Input: A 1 , . . . , A k , C ∈ Q d × d matrices Output: ∃ t 1 , . . . , t k � 0 such that n e A i t i = C � ? i =1 Input: A 1 , . . . , A k , C ∈ Q d × d matrices Output: C ∈ � semigroup generated by e A 1 t , . . . , e A k t : t � 0 � ? Theorem Both problems are: ◮ Undecidable in general ◮ Decidable when all the A i commute

  25. Some words about the proof (commuting case) Product Problem Semigroup Problem equivalent ∃ t 1 , . . . , t k � 0 s.t. C ∈ � e A 1 t , . . . , e A k t : t � 0 � ? i =1 e A i t i = C � n ? reduce Integer Linear Programming ∃ n ∈ Z d s.t. π Bn � s

  26. Some words about the proof (commuting case) Product Problem Semigroup Problem equivalent ∃ t 1 , . . . , t k � 0 s.t. C ∈ � e A 1 t , . . . , e A k t : t � 0 � ? i =1 e A i t i = C � n ? reduce ! s of the form: a 0 + log( a 1 ) + · · · + log( a k ) Integer Linear Programming ∃ n ∈ Z d s.t. π Bn � s � B , a 0 , . . . , a k are algebraic

  27. Some words about the proof (commuting case) Product Problem Semigroup Problem equivalent ∃ t 1 , . . . , t k � 0 s.t. C ∈ � e A 1 t , . . . , e A k t : t � 0 � ? i =1 e A i t i = C � n ? reduce ! s of the form: a 0 + log( a 1 ) + · · · + log( a k ) Integer Linear Programming ∃ n ∈ Z d s.t. π Bn � s � B , a 0 , . . . , a k are algebraic How did we get from reals to integers with π ? e it = α ⇔ t ∈ log( α ) + 2 π Z

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend