solutions of equations in one variable secant regula
play

Solutions of Equations in One Variable Secant & Regula Falsi - PowerPoint PPT Presentation

Solutions of Equations in One Variable Secant & Regula Falsi Methods Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University 2011 Brooks/Cole, Cengage


  1. Solutions of Equations in One Variable Secant & Regula Falsi Methods Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University � 2011 Brooks/Cole, Cengage Learning c

  2. Secant Derivation Secant Example Regula Falsi Outline Secant Method: Derivation & Algorithm 1 Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 2 / 25

  3. Secant Derivation Secant Example Regula Falsi Outline Secant Method: Derivation & Algorithm 1 Comparing the Secant & Newton’s Methods 2 Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 2 / 25

  4. Secant Derivation Secant Example Regula Falsi Outline Secant Method: Derivation & Algorithm 1 Comparing the Secant & Newton’s Methods 2 The Method of False Position (Regula Falsi) 3 Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 2 / 25

  5. Secant Derivation Secant Example Regula Falsi Outline Secant Method: Derivation & Algorithm 1 Comparing the Secant & Newton’s Methods 2 The Method of False Position (Regula Falsi) 3 Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 3 / 25

  6. Secant Derivation Secant Example Regula Falsi Rationale for the Secant Method Problems with Newton’s Method Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 4 / 25

  7. Secant Derivation Secant Example Regula Falsi Rationale for the Secant Method Problems with Newton’s Method Newton’s method is an extremely powerful technique, but it has a major weakness: the need to know the value of the derivative of f at each approximation. Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 4 / 25

  8. Secant Derivation Secant Example Regula Falsi Rationale for the Secant Method Problems with Newton’s Method Newton’s method is an extremely powerful technique, but it has a major weakness: the need to know the value of the derivative of f at each approximation. Frequently, f ′ ( x ) is far more difficult and needs more arithmetic operations to calculate than f ( x ) . Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 4 / 25

  9. Secant Derivation Secant Example Regula Falsi Derivation of the Secant Method f ( x ) − f ( p n − 1 ) lim f ′ ( p n − 1 ) = . x − p n − 1 x → p n − 1 Circumvent the Derivative Evaluation Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 5 / 25

  10. Secant Derivation Secant Example Regula Falsi Derivation of the Secant Method f ( x ) − f ( p n − 1 ) lim f ′ ( p n − 1 ) = . x − p n − 1 x → p n − 1 Circumvent the Derivative Evaluation If p n − 2 is close to p n − 1 , then f ′ ( p n − 1 ) ≈ f ( p n − 2 ) − f ( p n − 1 ) = f ( p n − 1 ) − f ( p n − 2 ) . p n − 2 − p n − 1 p n − 1 − p n − 2 Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 5 / 25

  11. Secant Derivation Secant Example Regula Falsi Derivation of the Secant Method f ( x ) − f ( p n − 1 ) lim f ′ ( p n − 1 ) = . x − p n − 1 x → p n − 1 Circumvent the Derivative Evaluation If p n − 2 is close to p n − 1 , then f ′ ( p n − 1 ) ≈ f ( p n − 2 ) − f ( p n − 1 ) = f ( p n − 1 ) − f ( p n − 2 ) . p n − 2 − p n − 1 p n − 1 − p n − 2 Using this approximation for f ′ ( p n − 1 ) in Newton’s formula gives p n = p n − 1 − f ( p n − 1 )( p n − 1 − p n − 2 ) f ( p n − 1 ) − f ( p n − 2 ) Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 5 / 25

  12. Secant Derivation Secant Example Regula Falsi Derivation of the Secant Method f ( x ) − f ( p n − 1 ) lim f ′ ( p n − 1 ) = . x − p n − 1 x → p n − 1 Circumvent the Derivative Evaluation If p n − 2 is close to p n − 1 , then f ′ ( p n − 1 ) ≈ f ( p n − 2 ) − f ( p n − 1 ) = f ( p n − 1 ) − f ( p n − 2 ) . p n − 2 − p n − 1 p n − 1 − p n − 2 Using this approximation for f ′ ( p n − 1 ) in Newton’s formula gives p n = p n − 1 − f ( p n − 1 )( p n − 1 − p n − 2 ) f ( p n − 1 ) − f ( p n − 2 ) This technique is called the Secant method Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 5 / 25

  13. Secant Derivation Secant Example Regula Falsi Secant Method: Using Successive Secants y y 5 f ( x ) p 3 p 0 p 2 p p 4 p 1 x Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 6 / 25

  14. Secant Derivation Secant Example Regula Falsi The Secant Method p n = p n − 1 − f ( p n − 1 )( p n − 1 − p n − 2 ) f ( p n − 1 ) − f ( p n − 2 ) Procedure Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 7 / 25

  15. Secant Derivation Secant Example Regula Falsi The Secant Method p n = p n − 1 − f ( p n − 1 )( p n − 1 − p n − 2 ) f ( p n − 1 ) − f ( p n − 2 ) Procedure Starting with the two initial approximations p 0 and p 1 , the approximation p 2 is the x -intercept of the line joining ( p 0 , f ( p 0 )) and ( p 1 , f ( p 1 )) . Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 7 / 25

  16. Secant Derivation Secant Example Regula Falsi The Secant Method p n = p n − 1 − f ( p n − 1 )( p n − 1 − p n − 2 ) f ( p n − 1 ) − f ( p n − 2 ) Procedure Starting with the two initial approximations p 0 and p 1 , the approximation p 2 is the x -intercept of the line joining ( p 0 , f ( p 0 )) and ( p 1 , f ( p 1 )) . The approximation p 3 is the x -intercept of the line joining ( p 1 , f ( p 1 )) and ( p 2 , f ( p 2 )) , and so on. Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 7 / 25

  17. Secant Derivation Secant Example Regula Falsi The Secant Method p n = p n − 1 − f ( p n − 1 )( p n − 1 − p n − 2 ) f ( p n − 1 ) − f ( p n − 2 ) Procedure Starting with the two initial approximations p 0 and p 1 , the approximation p 2 is the x -intercept of the line joining ( p 0 , f ( p 0 )) and ( p 1 , f ( p 1 )) . The approximation p 3 is the x -intercept of the line joining ( p 1 , f ( p 1 )) and ( p 2 , f ( p 2 )) , and so on. Note that only one function evaluation is needed per step for the Secant method after p 2 has been determined. Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 7 / 25

  18. Secant Derivation Secant Example Regula Falsi The Secant Method p n = p n − 1 − f ( p n − 1 )( p n − 1 − p n − 2 ) f ( p n − 1 ) − f ( p n − 2 ) Procedure Starting with the two initial approximations p 0 and p 1 , the approximation p 2 is the x -intercept of the line joining ( p 0 , f ( p 0 )) and ( p 1 , f ( p 1 )) . The approximation p 3 is the x -intercept of the line joining ( p 1 , f ( p 1 )) and ( p 2 , f ( p 2 )) , and so on. Note that only one function evaluation is needed per step for the Secant method after p 2 has been determined. In contrast, each step of Newton’s method requires an evaluation of both the function and its derivative. Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 7 / 25

  19. Secant Derivation Secant Example Regula Falsi The Secant Method: Algorithm To find a solution to f ( x ) = 0 given initial approximations p 0 and p 1 ; tolerance TOL ; maximum number of iterations N 0 . Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 8 / 25

  20. Secant Derivation Secant Example Regula Falsi The Secant Method: Algorithm To find a solution to f ( x ) = 0 given initial approximations p 0 and p 1 ; tolerance TOL ; maximum number of iterations N 0 . 1 Set i = 2, q 0 = f ( p 0 ) , q 1 = f ( p 1 ) Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 8 / 25

  21. Secant Derivation Secant Example Regula Falsi The Secant Method: Algorithm To find a solution to f ( x ) = 0 given initial approximations p 0 and p 1 ; tolerance TOL ; maximum number of iterations N 0 . 1 Set i = 2, q 0 = f ( p 0 ) , q 1 = f ( p 1 ) 2 While i ≤ N 0 do Steps 3–6: Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 8 / 25

  22. Secant Derivation Secant Example Regula Falsi The Secant Method: Algorithm To find a solution to f ( x ) = 0 given initial approximations p 0 and p 1 ; tolerance TOL ; maximum number of iterations N 0 . 1 Set i = 2, q 0 = f ( p 0 ) , q 1 = f ( p 1 ) 2 While i ≤ N 0 do Steps 3–6: 3 Set p = p 1 − q 1 ( p 1 − p 0 ) / ( q 1 − q 0 ) . ( Compute p i ) Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 8 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend