binary evolution and supernova kicks
play

Binary evolution and supernova kicks Mathieu Renzo The most common - PowerPoint PPT Presentation

Binary evolution and supernova kicks Mathieu Renzo The most common binary evolution path 2 see outreach movie at https://www.youtube.com/watch?v=qmfJNI0PXbo The most common binary evolution path 2 see outreach movie at


  1. Binary evolution and supernova kicks Mathieu Renzo

  2. The most common binary evolution path 2 see outreach movie at https://www.youtube.com/watch?v=qmfJNI0PXbo

  3. The most common binary evolution path 2 see outreach movie at https://www.youtube.com/watch?v=qmfJNI0PXbo

  4. The most common binary evolution path 2 see outreach movie at https://www.youtube.com/watch?v=qmfJNI0PXbo

  5. The most common binary evolution path 2 see outreach movie at https://www.youtube.com/watch?v=qmfJNI0PXbo

  6. How common is “common”? 3 Renzo et al. 19b

  7. What exactly disrupts the binary? 86 + 11 − 22 % of massive binaries are disrupted Ejecta impact (Tauris & Takens 98, Liu et al. 15) Loss of SN ejecta (Blaauw ’61) Renzo et al. 19b, Kochanek et al. 19, 4 Eldridge et al. 11, De Donder et al. 97

  8. What exactly disrupts the binary? 86 + 11 − 22 % of massive binaries are disrupted Ejecta impact (Tauris & Takens 98, Liu et al. 15) SN Natal kick (Shklovskii 70, Katz 75, Janka 13, 17) Loss of SN ejecta (Blaauw ’61) Renzo et al. 19b, Kochanek et al. 19, 4 Eldridge et al. 11, De Donder et al. 97

  9. Kicks do not change companion velocity 86 + 11 − 22 % of massive binaries are disrupted v dis ≃ v orb 2 before the SN SN Natal kick (Shklovskii 70, Katz 75, Janka 13, 17) Renzo et al. 19b, Kochanek et al. 19, 5 Eldridge et al. 11, De Donder et al. 97

  10. BH kicks from the mass of runaways

  11. A way to constrain BH kicks with Gaia Massive runaways mass function ( v ≥ 30 km s − 1 , M ≥ 7 . 5 M ⊙ ) 1.0 Probability × 10 5 0.0 # stars 1.0 0.0 1.0 0.0 0 10 20 30 40 50 60 70 M dis [ M ⊙ ] Mass 6 Numerical results publicly available at:: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  12. A way to constrain BH kicks with Gaia Massive runaways mass function ( v ≥ 30 km s − 1 , M ≥ 7 . 5 M ⊙ ) 1.0 Probability × 10 5 0.0 # stars 1.0 0.0 BH momentum kick ( σ kick = 265 km s − 1 , fiducial) 1.0 0.0 0 10 20 30 40 50 60 70 M dis [ M ⊙ ] Mass 6 Numerical results publicly available at:: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  13. A way to constrain BH kicks with Gaia Massive runaways mass function ( v ≥ 30 km s − 1 , M ≥ 7 . 5 M ⊙ ) 1.0 Probability × 10 5 0.0 BH: σ kick = 100 km s − 1 NS: σ kick = 265 km s − 1 # stars 1.0 (no fallback for BH) 0.0 BH momentum kick ( σ kick = 265 km s − 1 , fiducial) 1.0 0.0 0 10 20 30 40 50 60 70 M dis [ M ⊙ ] Mass 6 Numerical results publicly available at:: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  14. A way to constrain BH kicks with Gaia Massive runaways mass function ( v ≥ 30 km s − 1 , M ≥ 7 . 5 M ⊙ ) BH kick=NS kick ( σ kick = 265 km s − 1 ) 1.0 (no fallback) Probability × 10 5 0.0 BH: σ kick = 100 km s − 1 NS: σ kick = 265 km s − 1 # stars 1.0 (no fallback for BH) 0.0 BH momentum kick ( σ kick = 265 km s − 1 , fiducial) 1.0 0.0 0 10 20 30 40 50 60 70 M dis [ M ⊙ ] Mass 6 Numerical results publicly available at:: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  15. Mass-velocity varying the natal kick Renzo et al. 19b, (see also Dray et al. 2006 for WR runaways) Fiducial Intermediate BH kick Large BH kicks σ kick = 265 km s − 1 σ kick = 100 km s − 1 (no fallback) 100 100 100 − 6 − 6 − 6 BH: σ kick = 100 km s − 1 90 BH momentum kick 90 90 BH kick=NS kick ( σ kick = 265 km s − 1 , fiducial) NS: σ kick = 265 km s − 1 ( σ kick = 265 km s − 1 , no fallback) 80 80 (no fallback for BH) 80 − 7 − 7 − 7 70 70 70 M dis [ M ⊙ ] log 10 ( P dis ) M dis [ M ⊙ ] log 10 ( P dis ) M dis [ M ⊙ ] log 10 ( P dis ) 60 60 60 − 8 − 8 − 8 50 50 50 40 40 40 − 9 − 9 − 9 30 30 30 20 20 20 − 10 − 10 − 10 10 10 10 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 v dis [ km s − 1 ] v dis [ km s − 1 ] v dis [ km s − 1 ] 7 Numerical results publicly available at: http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  16. Kicks constraints from XRBs astrometry

  17. Post-SN velocity of surviving binaries NS + Main sequence BH + Main sequence BH kick = NS kick # systems Velocity respect to the pre-explosion binary center of mass 8 Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  18. Preliminary: The case of 4U1700-37 M ≃ 2 . 5 M ⊙ , M ∗ ≃ 60 ± 10 M ⊙ , P ≃ 3 . 4 days , e ≃ 0 . 22 , v ≃ 60 km s − 1 3 Galactic longitude 2 b (degrees) 1 current positions members NGC 6231 current position 4U 1700-37 0 348.00 347.25 346.50 345.75 345.00 344.25 343.50 342.75 l (degrees) Galactic latitude 9 van der Meij, D.-F . Guo, et al. (incl. MR), in prep.

  19. Preliminary: The case of 4U1700-37 M ≃ 2 . 5 M ⊙ , M ∗ ≃ 60 ± 10 M ⊙ , P ≃ 3 . 4 days , e ≃ 0 . 22 , v ≃ 60 km s − 1 3 Galactic longitude 2 b (degrees) 1 path NGC 6231 position members NGC 6231 2.2 Myr ago current positions members NGC 6231 current position 4U 1700-37 0 348.00 347.25 346.50 345.75 345.00 344.25 343.50 342.75 l (degrees) Galactic latitude 9 van der Meij, D.-F . Guo, et al. (incl. MR), in prep.

  20. Preliminary: The case of 4U1700-37 M ≃ 2 . 5 M ⊙ , M ∗ ≃ 60 ± 10 M ⊙ , P ≃ 3 . 4 days , e ≃ 0 . 22 , v ≃ 60 km s − 1 Galactic longitude Galactic latitude 9 van der Meij, D.-F . Guo, et al. (incl. MR), in prep.

  21. Conclusions

  22. Take home points Natal kicks cause the disruption of 86 + 11 − 22 % of massive binaries For disrupted binaries the kick acts only on compact object ⇒ walkaways outnumber the runaways; If binary remains bound the kick changes the kinematics of the whole system; Runaway mass distribution ⇒ constraints on BH kicks without seeing the 10 collapse nor the BH.

  23. Backup slides

  24. Methods: Population Synthesis Fast ⇒ Allows statistical tests of the inputs & assumptions Stellar SN kicks Winds Evolution Synthetic Initial Population Distributions (available online) RLOF & Common Mass Envelope Tidal Transfer Interactions

  25. Initial Distributions Kroupa ’01 (or Schneider et al. , ’18) flat Sana et al. , ’12 Probability slope=-2.3 (or -1.9) slope=-0.55 if M 1 ≥ 15 M ⊙ else flat 0 25 50 75 100 0.0 0.5 1.0 0 1 2 3 4 q = M 2 / M 1 log 10 ( P / [ days ]) M 1 [ M ⊙ ] Maxwellian σ v kick = 265 km s − 1 + Fallback rescaling (from Fryer et al. ’12) Probability 0 200 400 600 800 1000 NS kick [km s − 1 ] Hobbs et al. ’05

  26. Velocity distribution: Runaways Velocity respect to the pre-explosion binary center of mass Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  27. Velocity distribution: Walkaways Velocity respect to the pre-explosion binary center of mass Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  28. Velocity distribution: Walkaways Under-production of runaways because mass transfer widens the binaries and makes the secondary more massive Velocity respect to the pre-explosion binary center of mass Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  29. Star forming region velocity dispersion 0.12 0.05 R 15 = 26.8 0.04 0.10 R SFH = 14.1 0.03 15 0.02 Normalized Probability 0.01 0.08 0.00 − 40 − 20 0 20 40 v SFH [ km s − 1 ] 0.06 0.04 0.02 ≥ 15 M ⊙ Convolved 0.00 0 10 20 30 40 50 60 70 v dis [ km s − 1 ] Renzo et al. 19b

  30. Velocity distribution log-scale Cumulative 10 0 ⇐ Walkaways Runaways ⇒ 10 − 1 0.002 0.3 Probability × 10 3 0.001 0.2 0.000 2.00 2.25 0.1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 log 10 ( v dis / [ km s − 1 ]) Renzo et al. 19b

  31. Velocity post-main sequence stars 1.0 Cumulative 0.8 0.6 0.4 0.2 0.0 He stars 6 WDs 5 non-degenerate post-MS Probability × 10 5 4 3 2 1 0 0 20 40 60 80 100 120 v dis [ km s − 1 ] Renzo et al. 19b

  32. pre-CC mass distribution 1.0 Cumulative 0.8 0.6 0.4 0.2 0.0 M CC 8.0 M dis 7.0 Probability × 10 4 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 40 50 M pre − CC [ M ⊙ ] Renzo et al. 19b

  33. pre-CC separation distribution 1.0 Cumulative 0.8 0.6 0.4 0.2 0.0 M pre − CC ≥ 7.5 M ⊙ 2 2.0 Probability × 10 4 all M pre − CC 2 1.0 M pre − CC ≥ 15 M ⊙ 2 0.0 1 2 3 4 5 log 10 ( a pre − CC / R ⊙ ) Renzo et al. 19b

  34. How far do they get? “Distance traveled” (No potential well) Renzo et al. 19b

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend