size based indicators
play

Size based indicators rjan stman Dept. Aquatic Resources, regrund - PowerPoint PPT Presentation

Size based indicators rjan stman Dept. Aquatic Resources, regrund SLU What fish size indicate? Diet size dependend the ecological function of a stock/community depends on size distributions High mortality or selective


  1. Size based indicators Örjan Östman Dept. Aquatic Resources, Öregrund SLU

  2. What fish size indicate? • Diet size dependend – the ecological function of a stock/community depends on size distributions • High mortality or selective mortality results in few large fishes • Poor feeding conditions result in slow growth • Swedish Agency for Marine and Water Mangement has ” natural size distributions” of stocks as a primary goal

  3. Can size based indicators be used for ecological assessment? • Size, i.e. body length, readily available in Swedish monitoring data • What indicators to use? • Which asepects? • Drivers of size distributions?

  4. Potential indicators % Median • Some property of the size Mean distribution, e.g. mean, median quantile (Q90) Quantile • Easy, just measure length • Mean length of mature fish (mL mat ) Size or proportion fish expected to be mature (%Mat) #Ind • Must know maturity pattern, sex and site specific Mature • Can be few/low proportion • Mean length in relation to length at maturity (mL/Mat) or number of fish expected to be mature (#Mat) Size

  5. Perch (key species) & Pike, pikeperch, whitefish (large fish group) • Perch ubiquitous along the Swedish Baltic Sea coast, diet shift around 15-20 cm, mature earlier in Gulf of Bothnia (females 15 cm) than in BS Proper (females 25 cm) • Pike, pikeperch and whitefish lumped into one generic group of large fishes. Mature (90%) at 35 cm

  6. High redundancy among indicators across sites Variables factor map (PCA) Variables factor map (PCA) 1.0 1.0 p_P_Mat p_P_Mat p_P_Mat p_P_Mat p_P_Mat p_P_Mat p_P_Mat p_P_Mat p_P_Mat np_cpue_m90 np_cpue_m90 np_cpue_m90 np_cpue_m90 np_cpue_m90 np_cpue_m90 p_mL_M90 p_mL p_MedianL p_mL p_MedianL p_mL p_MedianL np_cpue_m90 np_cpue_m90 Dim 2 (20.70%) p_mL_M90 p_mL_M90 p_mL p_MedianL p_mL p_MedianL p_mL p_MedianL np_cpue_m90 p_mL_M90 p_mL_M90 p_mL_M90 p_mL p_MedianL p_mL p_MedianL p_mL_M90 p_mL_M90 p_mL_M90 p_mL p_MedianL 0.5 p_L90 p_L90 p_L90 p_cpue_m90 p_L90 p_L90 p_L90 p_cpue_m90 p_cpue_m90 p_L90 p_L90 p_mLmat p_mLmat p_mLmat Dim 4 (6.92%) p_cpue_m90 p_cpue_m90 p_cpue_m90 p_L90 p_mLmat p_mLmat p_mLmat 0.5 p_cpue_m90 p_cpue_m90 p_cpue_m90 p_mLmat p_mLmat p_mLmat p_P_Mat p_P_Mat p_P_Mat p_P_Mat p_P_Mat p_P_Mat p_P_Mat p_P_Mat p_P_Mat np_mLmat np_mLmat np_mLmat np_mLmat np_mLmat np_mLmat np_mLmat np_mLmat np_mLmat p_cpue_m90 p_cpue_m90 p_cpue_m90 p_cpue_m90 p_cpue_m90 p_cpue_m90 p_cpue_m90 p_cpue_m90 np_L90 p_cpue_m90 np_L90 np_L90 np_L90 np_L90 np_L90 np_L90 np_L90 np_L90 0.0 p_MedianL p_MedianL p_MedianL p_MedianL p_MedianL p_MedianL p_MedianL p_MedianL p_MedianL 0.0 p_mL p_mL p_mL p_mL_M90 p_mL_M90 p_mL_M90 p_mL p_mL p_mL p_mL_M90 p_mL_M90 p_mL_M90 p_mL p_mL p_mL p_mL_M90 p_mL_M90 p_mL_M90 p_L90 p_L90 p_L90 p_L90 p_L90 p_L90 np_P_Mat np_P_Mat np_P_Mat p_L90 p_L90 p_L90 np_P_Mat np_P_Mat np_P_Mat np_P_Mat np_P_Mat np_P_Mat np_cpue_m90 np_cpue_m90 np_cpue_m90 np_mL np_MedianL np_mL np_MedianL np_mL np_MedianL np_cpue_m90 np_cpue_m90 np_cpue_m90 np_mL np_MedianL np_mL np_MedianL np_mL np_MedianL np_cpue_m90 np_cpue_m90 np_mL_M90 np_mL_M90 np_mL_M90 np_mL np_MedianL np_mL np_MedianL np_mL np_MedianL np_cpue_m90 np_mL_M90 np_mL_M90 np_mL_M90 np_mL_M90 np_mL_M90 np_mL_M90 p_mLmat p_mLmat p_mLmat p_mLmat p_mLmat p_mLmat p_mLmat p_mLmat np_L90 p_mLmat np_mL_M90 np_mL_M90 np_mL_M90 np_L90 np_L90 np_mL_M90 np_mL_M90 np_mL_M90 np_L90 np_L90 np_L90 np_L90 np_L90 np_mL_M90 np_mL_M90 np_mL_M90 np_L90 np_MedianL np_MedianL np_MedianL np_MedianL np_MedianL np_MedianL np_MedianL np_MedianL np_MedianL np_mLmat np_mLmat np_mLmat np_mLmat np_mLmat np_mLmat np_mLmat np_mLmat np_mL np_mL np_mL np_mLmat np_mL np_mL np_mL np_mL np_mL np_mL np_P_Mat np_P_Mat np_P_Mat np_P_Mat np_P_Mat np_P_Mat np_P_Mat np_P_Mat np_P_Mat -1.0 -1.0 -2 -1 0 1 2 -2 -1 0 1 2 Dim 1 (48.33%) Dim 3 (11.06%)

  7. I chose… mTemp GearNL GearTN 1 • Length at 90 percentile (L90) TOTP np_L90 np_mLmat np_mL np_MedianL np_cpue_m90 p_mLmat p_L90 p_mL p_MedianL 0 0 p_P_Mat GearNN np_mL_M90 • Mean length relative size-at- Lat GearKÖ -1 RDA2 -2 np_P_Mat maturation (mL/M90) p_cpue_m90 -4 • Catch per unit effort of mature -6 fish (cpue_m90) p_mL_M90 -10 -5 0 5 • Differ between gears and RDA1 latitude

  8. Temporal drivers? 4 3 2 3 • At three long-term 1 2 L90 Perch L90 NonPerch 0 monitoring sites (Holmön and 1 -2.5 -1.5 -0.5 0.5 1.5 2.5 -1 0 Forsmark, Coastal nets, Kvädö -3 -2 -1 0 1 2 -2 -1 -3 Salinity and Vinö, Net links) -2 N load 4 4 3 • Negative associations with 3 CPUE M90 Perch 2 CPUE M90 NonPerch 2 1 nutrient loadings over time 1 0 0 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 -1 -1 -2 -2 N load P load • mL/M90 for both perch and 4 5 3 4 large fish positive with mL/M90 Perch 2 mL/M90 NonPerch 3 1 2 salinity? 0 1 -2.5 -1.5 -0.5 0.5 1.5 -1 0 -2 -3 -2 -1 0 1 2 3 -1 -3 -2 -4 P load P load -3

  9. Cont • Several indicators negative Non- Non- Driver Perch Perch Perch Non- perch perch associations with temperature variable L 90 CPUE m90 mL m90 perch L 90 CPUE m90 mL m90 471.0 448.1 447.6 451.1 478.0 418.7 AICc 0.09 0.10 0.20 0.10 0.07 0.14 Adj. R 2 • Perch positive autocorrelation -10.0 -3.1 -16.2 +1.8 +1.2 +1.3 φ(t -1) Hydro- +1.5 -2.2 (+) -6.0 (-) -11.2(-) -11(-) -1.8 (-) Temp climate -2.4(+) +2.0 -0.6 (+) +1.8 +1.2 -4.2(+) variables Salinity +0.6 +1.9 +0.4 +1.9 +0.6 +1.8 BSI Anthropo +0.6 +1.3 +0.6 +0.4 -1.2(-) +1.2 Secchi -genic +2.0 +0.9 +2.0 +0.1 -7.2(-) +2.0 divers Nload +1.5 -0.6(-) -4.2 (-) -15.7(-) +1.6 -18 (-) Pload +1.4 +1.3 +0.7 +1.8 +0.8 +1.5 DIN +0.7 +0.6 +0.1 +2.0 +1.5 +1.9 DIP Landing +0.9 +0.2 +0.8 +1.9 +1.7 +0.9 s

  10. No-take areas/refererence area Perch Non-perch Perch L 90 Perch mL m90 Non-perch L 90 Non-perch mL m90 CPUE m90 CPUE m90 Licknevarp NN (2013) NTA 32 cm 8.5 96% 49 cm 0.55 105% (26 cm) (1.5) (80%) (39 cm) (0.14) (66%) Kvädö Lännåker NN (2012-2015) 30 cm 1.5 84% 32 cm 0.34 53% NTA (31 cm) (3.75) (92%) (40 cm) (0.14) 62% Before Lännåker TN (2012-2015) 27 cm 8.6 82% 73 cm 3.0 105% NTA Before (30 cm) (20.2) (94%) (71 cm) (1.6) (115%) Storjungfrun NN (2013-2015) NA NA NA 43 cm 0.32 104% (30 cm) (0) Before Kalvhararna NN (2013-2015) 33 cm 0.84 170% 39 cm 0.19 95% Before (28 cm) (0.48) (166%) (37 cm) (0.03) (92%)

  11. GES bounadries reference areas Long time-series Perch Non-perch Non-perch Perch L 90 Perch mL m90 Non-perch L 90 CPUE m90 CPUE m90 mL m90 Kvädö Net link 22 cm (3) 0.3 (2) 72% (1) 38 cm (4) 0.10 (2) 73% (7*) Kvädö Nordic Net 24 cm (3) 0.75 (2) 77% (2) 35 cm (1) 0.05 (1) 59% (2*) Vinö Net link 21 cm (1) 0.5 (1) 71% (1) 39 cm (1) 0.14 (3) 71% (1) Forsmark Coast net 24 cm (2) 2 (3) 75% (3) 31 cm (3) 0 (0) 57% (2) Forsmark Nordic Net 26 cm (1) 1.7 (0) 79% (2) 25 cm (1) 0 (0) 49% (3) Holmön Coast Net 23 cm (3) 30 (1) 125% (3) 38 cm (3) 0.04 (4) 80% (2) Holmön Nordic net 25 cm (2) 11 (1) 125% (1) 35 cm (3) 0.05 (3) 85% (3) (Years below boundary, n = 22-28 for Net link/ Coastal nets, n = 15 for Nordic nets) CS, NL: 22-23 cm NA 70% 38 cm 0.05? 70% NN: 24 cm NA 75% 35 cm 0.05? 70%

  12. Nordic nets spatial comparison Gulf of Non-perch Non-perch Perch L 90 Perch CPUE m90 Perch mL m90 Non-perch L 90 CPUE m90 mL m90 Bothnia MPA (N = 4) 28.5 ± 1.2 7.7 ± 5.2 135 ± 17 42 ± 2.2 0.11 ± 0.05 96.3 ± 1.8 REF (N = 6) 25.7 ± 0.7 11.4 ± 2.2 123 ± 8.1 43 ± 2.9 0.13 ± 0.03 70.2 ± 4.4 URB (N = 3) 26.3 ± 1.2 12.2 ± 2.6 136 ± 3.9 33.7 ± 3.5 0.27 ± 0.10 69.7 ± 9.8 Baltic Sea Proper EUT (N = 4) 26 ± 1.2 1.0 ± 0.4 80.5 ± 1.2 36.5 ± 2.4 0.46 ± 0.07 66.6 ± 1.8 MPA (N = 5) 24.75 ± 1.9 1.45 ± 0.5 80.6 ± 3.5 47 ± 1.9 0.36 ± 0.03 109 ± 12 NOT (N =3) 29.7 ± 1.2 3.65 ± 2.4 86.9 ± 4.8 57.3± 16 0.35 ± 0.1 102 ± 27 OTH (N =7) 26.3 ± 0.7 1.4 ± 0.3 81.1 ± 1.6 41.8 ± 1.1 0.30 ± 0.06 84 ± 3.8 REF (N = 15) 24.9 ± 0.4 1.6 ± 0.3 78.6 ± 0.8 41.25 ± 2.0 0.11 ± 0.03 70.4 ± 5.9 URB (N = 4) 27.3 ± 0.6 1.7 ± 0.5 83.6 ± 1.3 57.5 ± 3.9 0.25 ± 0.02 105 ± 6.3

  13. Summary pros • Size based indicators use readily (in Sweden) available information • Associated with nutrients and temperature in time-series • Respond positively to no-take areas • Identify non-site specific boundaries for L90 seem possible • Maybe non-site specific boundaries for mL/M90 as well • Good complement to abundance based indicators

  14. Summary cons • Gear specific • Some human impacted sites show quite good status based on size distributions • Need size distributions • Would need more/better site-speific life-history data

  15. Summary

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend