simple quantum paramagnet canonical ensemble origin of
play

Simple Quantum Paramagnet, Canonical Ensemble Origin of magnetic - PowerPoint PPT Presentation

Simple Quantum Paramagnet, Canonical Ensemble Origin of magnetic moments: Electron spin and orbital angular momentum + L J S = g J e h/ 2 m e c J B B Nuclear angular momentum


  1. Simple Quantum Paramagnet, Canonical Ensemble Origin of magnetic moments: Electron spin and orbital angular momentum � + L � ≡ J � � S µ � = g µ J µ ≡ e ¯ h/ 2 m e c J B B Nuclear angular momentum � � I µ � = g µ I µ ≡ e ¯ h/ 2 m p c I N N 8.044 L 16 B1

  2. ∂ m = − gµ H m B 2J+1 m = J, J − 1 , · · · − J g µ B H sinh[( J + 1 J J 2 ) � ] � ) m − ∂ m /kT � � Z 1 ( T, H ) = e = ( e = 1 � ] sinh[ 2 m = − J m = − J gµ H level spacing B � ≡ = kT kT Z = Z 1 ( � ) N = Z ( � ) at fixed N Note Z 1 = Z 1 ( � ) 8.044 L 16 B2 a

  3. ∂ m = − gµ H m B 2J+1 m = J, J − 1 , · · · − J g µ B H sinh[( J + 1 J J 2 ) � ] � ) m − ∂ m /kT � � Z 1 ( T, H ) = e = ( e = 1 � ] sinh[ 2 m = − J m = − J gµ H level spacing B � ≡ = kT kT Z = Z 1 ( � ) N = Z ( � ) at fixed N Note Z 1 = Z 1 ( � ) 8.044 L 16 B2 b

  4. − ∂ m /kT /Z 1 = e � m /Z 1 p ( m ) = e ( gµ m ) e � m    1 �Z 1 B < µ > = � = gµ  B Z 1 Z 1 �� m ≡ gµ JB ( � ) M = N < µ > = gµ NJB ( � ) B J B J   1  1 �Z 1 B ( � ) =  J J Z 1 �� 1 1 1 1 1 � � = ( J + ) coth[( J + ) � ] − coth[ � ] J 2 2 2 2 This is called the “Brillouin Function”. 8.044 L 16 B3

  5. J + 1 1 x lim B ( η ) = η coth x � + x « 1 J 3 η � 0 3 x − η e − 2 x lim B ( η ) = 1 − coth x � 1 + 2 e x » 1 J η �⇐ J ( gµ ) 2 J ( J + 1) H B M � N High T (Curie Law) 3 kT � � 1 − η � N gµ J 1 − Low T (Energy Gap) e B J 8.044 L 16 B4

  6. MAGNETIZATION OF A QUANTUM PARAMAGNET 1 0.8 0.6 0.4 0.2 1 2 3 4 1 0.8 0.6 0.4 y c 0.2 1 2 3 4 x 8.044 L16B5

  7. ( gµ ) 2 J � � � � ∂M ∂η = Ngµ J B → ( η ) B → ( η ) B χ = N ≡ T B J J ∂H ∂H kT T T gµ H B Note: T and H enter only through η ≡ kT � � � � ∂η η ∂η η = = − ∂H H ∂T T T H We now show that this � U = 0. 8.044 L 16 B 6

  8. dU = TdS + HdM �� � � � � �� � � � � ∂S ∂S ∂M ∂M = dT + + H dT + T dH dH ∂T ∂H ∂T ∂H H T H T � � � � � � � � � � � � ∂S ∂M ∂S ∂M = T + H dT + T + H dH ∂T ∂T ∂H ∂H H H T T � �� � � �� � 0 0 = 0 for all paths ⇒ U = 0 8.044 L 16 B 7

  9. � � � � � � � � ∂S ∂M ∂S ∂S T + H = T + H ∂T ∂T H ∂T ∂H H H T � �� � � �� � S → ( η )( − η/T ) S → ( η )( η/H ) = − ηS → ( η ) + ηS → ( η ) = 0 A similar expansion shows that the other term is also zero. 8.044 L 16 B 8

  10. ⇒ Internal Energy dU = d /Q + d /W = TdS + HdM dU ≡ adiabatic ( d /Q = 0) work /Q = TdS, d /Q = 0 � dS = 0 � dM = 0 � dU = 0 d dU = 0 for any change: U = 0 for this model But E ≡ N < ∂ > = − HM = 0 !! 8.044 L 16 B 9

  11. � Energy = energy to create H field 1 � + energy to assemble M 2 + energy to move M into H � 3 8.044 L 16 B 10

  12. � 1 does not appear when using d /W = HdM . � 2 We did not create the � µ . They do not interact. � U = 0 in the current example. � � · M � , energy of macroscopic moment in H � 3 − H equals N < ∂ > in the current example. 8.044 L 16 B 11

  13. So what’s the result ? < H > S. M. ⇒ = U Thermo = U assembly + ( − � H · � M ) position (for d /W = HdM ) �     1 1 dZ ∂Z ∂η < H > = − = − = − HM     Z ∂β Z dη ∂β H H � �� � � �� � M/gµ B gµ B H 8.044 L 16 B 12

  14. � � � � d /Q ∂S C M ≡ = T = 0 since S = S ( M ) dT ∂T M M � � � � � � d /Q 1 ∂M C = dU − HdM = − H ≡ H dT T ���� ∂T H H 0 H = NkJη 2 B � ( η ) J 8.044 L16B13

  15. HEAT CAPACITY OF A QUANTUM PARAMAGNET 8.044 L16B14

  16. Entropy of a Quantum Paramagnet • When is − kT ln Z ⇒ = F ? • How is a paramagnet like a sponge? 8.044 L 16 B 15

  17. HIGH AND LOW TEMPERATURE BEHAVIOR OF A QUANTUM PARAMAGNET kT >> g µ B H kT << g µ B H g µ B H ENERGY LEVELS ALMOST MOMENT ALMOST MAXIMUM, EQUALLY POPULATED, ENERGY GAP BEHAVIOR CURIE LAW BEHAVIOR 8.044 L16B16

  18. S ( kT « gµ H ) � Nk ln(1) = 0 B S ( kT » gµ H ) � Nk ln(2 J + 1) B J η ) m � Z 1 = ( e η ≡ gµ H/kT B m = − J Try − kT ln Z = F = U − TS � S = k ln Z = Nk ln Z 1 ���� 0 8.044 L 1 6B 17

  19. S ( kT « gµ H ) � Nk ln(1) = 0 B S ( kT » gµ H ) � Nk ln(2 J + 1) Nk ln(2 J + 1) O.K. B J η ) m � Z 1 = ( e η ≡ gµ H/kT B m = − J Try − kT ln Z = F = U − TS � S = k ln Z = Nk ln Z 1 ���� 0 8.044 L 1 6B 18 •

  20. S ( kT « gµ H ) � Nk ln(1) = 0 NkJ ( gµ H/kT ) wrong! B B S ( kT » gµ H ) � Nk ln(2 J + 1) Nk ln(2 J + 1) O.K. B J η ) m � Z 1 = ( e η ≡ gµ H/kT B m = − J Try − kT ln Z = F = U − TS � S = k ln Z = Nk ln Z 1 ���� ���� � �� � 0 wrong wrong � 8.044 L 1 6B 19

  21. In the derivation of the canonical ensemble we found − kT ln Z = < E 1 > − TS 1 where < E 1 > = < H ( { p, q } ) > Then we set < E 1 > = U . But in the paramagnet < E 1 > = U − HM , thus − kT ln Z = U − HM − TS = G ( T, H ) for our model. ⇒ S = k ln Z − HM/T Nk ln Z 1 − H ( Ngµ B J ) /T → � ���� T → 0 8.044 L16B20

  22. In general for magnetic systems, even when U = 0, dG = − SdT − MdH G ( T, H ) = − k B T ln Z � � ∂G M ( T, H ) = − ∂H T � � ∂G S ( T, H ) = − ∂T H 8.044 L16B21

  23. ENTROPY OF A QUANTUM PARAMAGNET 8.044 L16B22

  24. ADIABATIC DEMAGNETIZATION (MAGNETIC COOLING) INITIAL COOLING STAGE T initial 1 H = H initial THERMAL LINK 1 S M ~ 0 1 S total 1 S S high MAGNET ⊗ 1 T S = T initial kT << g µ B H SAMPLE 8.044 L16B23

  25. ADIABATIC DEMAGNETIZATION (MAGNETIC COOLING) INITIAL COOLING STAGE T initial H ~ 0 S M ~ Nk ln(2J+1) ⊗ 2J+1 S total S S low kT >> g µ B H T S << T initial SAMPLE 8.044 L16B24

  26. Electronic Example, CMN Cerium Mangesium Nitrate 2Ce(NO 3 ) 3 · 3Mg(NO 3 ) 2 · 24H 2 O Ce +++ J=5/2 T ordering ∼ 1.9 mK Cools 3 He and samples therein to ∼ 2 mK. 8.044 L 1 6B 25

  27. Nuclear Example, Cu Metallic Copper Cu I=3/2 T ordering ∼ 1 µ K Cools Cu electrons and lattice to ∼ 10 µ K. 8.044 L 1 6B 26

  28. MIT OpenCourseWare http://ocw.mit.edu 8.044 Statistical Physics I Spring 2013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend