du t ds p dv dn different phases gas to liquid to solid
play

dU = T dS P dV + dN Different phases gas to liquid to solid - PowerPoint PPT Presentation

dU = T dS P dV + dN Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid Chemical reactions Different locations adsorption of gas on a surface flow of charged particles in a semiconductor 8.044 L18B1


  1. dU = T dS − P dV + µdN Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid Chemical reactions Different locations adsorption of gas on a surface flow of charged particles in a semiconductor 8.044 L18B1

  2. Note that ∂U � � µ = ∂N S,V ↑ This is often a source of miss-understanding. However F ≡ U − TS ⇒ dF = dU − T dS − SdT dF = − SdT − P dV + µdN So ∂F � � µ = ∂N T,V 8.044 L18B2

  3. �� �� � � ��� � ��� � � � ��� � ��� � dS = 1 T dU + P T dV − µ T dN = 1 + 1 ( − dU 2 ) − µ 1 dU 2 − µ 2 ( − dN 2 ) dN 2 T 1 T 1 T 2 T 2      1 − 1  µ 1 − µ 2 =  dU 2 +  dN 2 ≥ 0 T 2 T 1 T 1 T 2 8.044 L18B3

  4. If T 1 > T 2 , energy flows to the right. If T 1 = T 2 there is no energy flow. If the two sides are at the same temperature and µ 1 > µ 2 particles flow to the right. If T 1 = T 2 and µ 1 = µ 2 there is neither energy flow nor particle flow and one has an equilibrium situation. 8.044 L18B4

  5. Example: Adsorption ε ���� ε ����� � ε � ��������������� ������������ ������������������������ ��������� 8.044 L18B5

  6. 3D gas V 2 2 2 dp x dp y dp z /h 3 = λ 3 ( T ) � − ( p x + p y + p ) / 2 mk B T Z 1 = V e z 1 N Z = Z 1 N ! F = − k B T ln Z = − k B T ( N ln Z 1 − N ln N + N ) ∂F � � µ = = − k B T (ln Z 1 − N/N − ln N + 1) ∂N V,T V 1 N � � � � λ 3 ( T ) = − k B T ln = k B T ln N λ 3 V 8.044 L18B6

  7. 2D gas on surface with binding energy E 0 2 2 � E 0 /k B T − ( p x + p y ) / 2 mk B T dp x dp y /h 2 Z 1 = A e e A E 0 /k B T = e λ 2 ( T ) ⎛ ⎞ Z 1 E 0 /k B T A 1 � � µ = − k B T ln = − k B T ln ⎝ e ⎠ N λ 2 ( T ) N N � � λ 2 ( T ) = − E 0 + k B T ln A 8.044 L18B7

  8. Define the number density in the bulk as n ≡ N/V and on the surface as σ ≡ N/A . In equilibrium µ surface = µ bulk − � 0 + k B T ln σ λ 2 ( T ) = k B T ln n λ 3 ( T ) � � � � ln σ λ 2 ( T ) = � 0 /k B T + ln n λ 3 ( T ) � � � � σ λ 2 ( T ) = e � 0 /k B T n λ 3 ( T ) � 0 /k B T σ = λ ( T ) e n 8.044 L18B8

  9. h � 0 /k B T σ = √ e n 2 πmk B T 8.044 L18B9

  10. Ensembles • Microcanonical: E and N fixed Starting point for all of statistical mechanics Difficult to obtain results for specific systems • Canonical: N fixed, T specified; E varies Workhorse of statistical mechanics • Grand Canonical: T and µ specified; E and N vary Used when the the particle number is not fixed 8.044 L18B1 0

  11. � � �������������������������������� � ������������������������������������������������ � ����������������������������������������������� � ������������������������������������������������� ������������������������ �������� 8 � 11

  12. For the entire system (microcanonical) one has volume of accessible phase space consistent with X p ( system in state X ) = Ω( E ) In particular, for our case p ( { p 1 , q 1 , N 1 } ) ≡ p ( subsystem at { p 1 , q 1 , N 1 } ; remainder undetermined ) Ω 1 ( { p 1 , q 1 , N 1 } ) Ω 2 ( E − E 1 , N − N 1 ) = Ω( E, N ) 8.044 L18B 12

  13. k ln p ( { p 1 , q 1 , N 1 } ) = k ln Ω 1 − k ln Ω( E, N ) f ( ) f ( ) k ln 1 = 0 S ( E, N ) + k ln Ω 2 ( E − E 1 , N − N 1 ) f ( ) S 2 ( E − E 1 , N − N 1 ) 8.044 L18B 13

  14. ⎛ ⎞ ∂S 2 S 2 ( E − E 1 , N − N 1 ) ≈ S 2 ( E, N ) − E 1 ⎝ ⎠ ∂E 2 N 2 , 2 1 /T ⎛ ⎞ ∂S 2 − ⎝ N 1 ⎠ ∂N 2 E 2 , 2 − µ/T = S 2 ( E, N ) − H 1 ( { p 1 , q 1 , N 1 } /T + µN 1 /T 8.044 L18B 14

  15. H 1 ( { p 1 , q 1 , N 1 } ) µN 1 k ln p ( { p 1 , q 1 , N 1 } ) = − + T T + S 2 ( E, N ) − S ( E, N ) The first line on the right depends on the specific state of the subsystem. The second line on the right depends on the reser- voir and the average properties of the subsystem. 8.044 L18B 15

  16. ¯ 1 , N ¯ 1 ) + S 2 ( E ¯ 2 , N ¯ 2 ) S ( E, N ) = S 1 ( E S 2 ( E, N ) − S ( E, N ) [ S 2 ( E, N ) − S 2 ( ¯ E 2 , ¯ N 2 )] − S 1 ( ¯ E 1 , ¯ = N 1 )      ∂S 2  ∂S 2 ¯ N 1 ] − S 1 ( ¯ ¯ E 1 , ¯ = [ E 1 + N 1 )   ∂E 2 ∂N 2 N 2 E 2 [ ¯ E 1 /T − µ ¯ N 1 /T ] − S 1 ( ¯ E 1 , ¯ = N 1 ) = ( ¯ E 1 − µ ¯ N 1 − T S 1 ) /T = ( F 1 − µ ¯ N 1 ) /T 8.044 L18B 16

  17. H 1 ( { p 1 , q 1 , N 1 } ) + µN 1 k ln p ( { p 1 , q 1 , N 1 } ) = − T T +( F 1 − µ ¯ N 1 ) /T exp[ β ( µN 1 − H )] exp[ β ( F 1 − µ ¯ p ( { p 1 , q 1 , N 1 } ) = N 1 ) exp[ β ( µN − H )] exp[ β ( F − µ ¯ p ( { p, q, N } ) = N )] exp[ β ( µN − H )] / exp[ − β ( F − µ ¯ = N )] 8.044 L18B 17

  18. ∞ e p ( { p, q, N } ) { dp, dq } = 1 N =1 exp[ β ( µN − H )] p ( { p, q, N } ) = Z ∞ Z ( T, V, µ ) = e exp[ β ( µN − H )] { dp, dq } N =1 ∞ e ( e βµ ) N Z ( T, V, N ) = N =1 ¯)] = exp[ − β ( F − µN 8.044 L18B 18

  19. ∞ ⎛ ⎞ ∂ Z e = exp[ β ( µN − H )] { dp, dq } βN ⎝ ⎠ ∂µ N =1 T,V ∞ ⎛ ⎞ ⎛ ⎞ 1 ∂ Z exp[ β ( µN − H )] = e ⎠ { dp, dq } N ⎝ ⎠ ⎝ β Z ∂µ Z N =1 T,V ∞ ⎛ ⎞ 1 ∂ Z e = p ( { p, q } , N ) { dp, dq } N ⎝ ⎠ β Z ∂µ T,V N =1 ⎛ ⎞ 1 ∂ ln Z = < N > ⎝ ⎠ β ∂µ T,V 8.044 L18B 19

  20. Define a new thermodynamic potential, the ”Grand potential”, Φ G . ¯ = U − TS − µN ¯ Φ G ≡ F − µN ¯ − Ndµ ¯ d Φ G = dF − µ d N ¯ = − SdT − P dV − Ndµ 8.044 L18B 20

  21. Then the connection between statistical mechan- ics and thermodynamics in the Grand Canonical Ensemble is through the Grand potential ∂ Φ G � � S = − ∂T V, µ ∂ Φ G � � P = − ∂V T, µ ⎛ ⎞ ∂ Φ G ¯ N = − ⎝ ⎠ ∂µ T,V 8.044 L18B 21

  22. Specification of a symmetrically allowed many body state. Indicate which single particle states, α, β, γ, · · · , are used and how many times. { n α , n β , n γ , · · ·} An ∞ # of entries, each ranging from 0 to N for Bosons and 0 to 1 for Fermions, but with the restriction that α n α = N � 8.044 L18B 22

  23. | 1 , 0 , 1 , 1 , 0 , 0 , · · ·) Fermi-Dirac | 2 , 0 , 1 , 3 , 6 , 1 , · · ·) Bose-Einstein ' E α n α = E � � Prime indicates n α = N α α 8.044 L18B 23

  24. Statistical Mechanics Try Canonical Ensemble − E ( state ) /kT Z ( N, V, T ) = � e states ↔ − E ( { n α } ) /kT � = e { n α } � � ↔ − E α n α /kT � � = e α { n α } This can not be carried out. One can not interchange the � over occupation numbers and the � over states because the occupation numbers are not independent ( n α = N ). � 8.044 L 18 B 24

  25. Statistical Mechanics Grand Canonical Ensemble [ µN − E ( state )] /kT Z ( T, V, µ ) = e states [ µN − E ( { n α } )] /kT = e { n α } � � e ( µ − E α ) n α /kT = α { n α } ⎛ ⎞ ( µ − E α ) n α /kT ⎟ = e ⎜ ⎝ ⎠ α { n α } 8.044 L18B 25

  26. For Fermions n α = 0 , 1 ( µ − E α ) n α /kT ( µ − E α ) β = 1 + e e { n α } � � ( µ − E α ) β ln Z = ln 1 + e α For Bosons n α = 0 , 1 , 2 , · · · � − 1 � ( µ − E α ) β ] n α ( µ − E α ) β [ e = 1 − e { n α } � � ( µ − E α ) β ln Z = − ln 1 − e α 8.044 L18B 26

  27. < n α > < N > = α ⎛ ⎞ = 1 ⎝ ∂ ln Z ⎠ β ∂µ T,V ( µ − E α ) β e = { + F-D , − B-E } ( µ − E α ) β α 1 ± e 1 < n α > = e ( E α − µ ) β ± 1 8.044 L18B27

  28. MIT OpenCourseWare http://ocw.mit.edu 8.044 Statistical Physics I Spring 2013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend