epos
play

EPOS Klaus Werner with Tanguy Pierog, Karlsruhe, Germany Yuriy - PowerPoint PPT Presentation

COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 1 EPOS Klaus Werner with Tanguy Pierog, Karlsruhe, Germany Yuriy Karpenko, Nantes, France Benjamin Guiot, Valparaiso, Chile Gabriel Sophys, Nantes, France Maria


  1. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 1 EPOS Klaus Werner with Tanguy Pierog, Karlsruhe, Germany Yuriy Karpenko, Nantes, France Benjamin Guiot, Valparaiso, Chile Gabriel Sophys, Nantes, France Maria Stefaniak, Nantes & Warsaw, Poland Mahbobeh Jafarpour, Nantes, France Johannès Jahan, Nantes, France

  2. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 2 Contents 1 Introduction 4 2 Glauber and Gribov-Regge approach 32 3 Collectivity 60 4 Summary 84

  3. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 3 Todays lecture: short version of a detailed lecture (266 pages) at the Joliot-Curie International School 2018 https://ejc2018.sciencesconf.org/data/pages/joliot.20.pdf Today only some selected (important) topics ...

  4. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 4 ————————————————————— Introduction 1 —————————————————————

  5. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 5 EPOS is an event generator to treat consistently � e+e- annihilation (test string fragmentation) � ep scattering (test parton evolution) � pp, pA, AA collisions at high energies (collision finished before particle production starts)

  6. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 6 Basic structure of EPOS (for modelling pp, pA, AA) � Primary interactions Multiple scattering, instantaneously, in parallel (Parton Based Gribov-Regge Theory) – in pA and AA: multiple NN scattering – but also in pp : Multiple parton scattering (or for each NN scattering in pA, AA) � Secondary interactions formation of “matter” which expands collectively, like a fluid, decays statistically

  7. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 7 Some history of Gribov-Regge Theory (the heart of EPOS) � 1960-1970: Gribov-Regge Theory of multiple scattering. pp = multiple exchange of “Pomerons” (with amplitudes based on Regge poles) � 1980-1990: pQCD processes added into GRT scheme (Capella) � 1990: M.Braun, V.A.Abramovskii, G.G.Leptoukh: problem with energy conservation (not done consistently)

  8. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 8 � 2001: H.J.Drescher, M.Hladik, S.Ostapchenko, T. Pierog, and K. Werner, Phys. Rept. 350, p93: Marriage pQCD + GRT, with energy sharing (NEXUS) Multiple scatterings (in parallel !!) + + x x 1 in pp, pA, or AA 2 Single scattering − x − x 1 = hard elementary 2 scattering including IS + FS ✎ ☞ radiation ∑ x ± i + x ± remn = 1 ✍ ✌

  9. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 9 � ~ 2003 NEXUS split into � QGSJET (S. Ostapchenko) – Triple Pomeron contributions and more, to all orders � EPOS (T. Pierog, KW) – Saturation scale, secondary interactions – two versions, EPOSLHC and EPOS3, going to be “fused”, with a rigorous (selfconsistent) treatment of new key features (HF, saturation & factorization) => new public version ( β version exists since few days ...) Two of the key models used for airshower simulations

  10. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 10 Secondary interactions: Example: space-time evolution in pp leading to collective flow

  11. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 11 3 η τ energy density [GeV/fm ] ( = 0.0 , = 0.10 fm/c) J 0 s 350 pp @ 7TeV EPOS 3.119 y [fm] 2 1.5 300 1 250 0.5 200 0 150 -0.5 100 -1 50 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  12. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 12 3 η τ energy density [GeV/fm ] ( = 0.0 , = 0.29 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 60 1.5 1 50 0.5 40 0 30 -0.5 20 -1 10 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  13. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 13 3 η τ energy density [GeV/fm ] ( = 0.0 , = 0.48 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 1.5 20 1 15 0.5 0 10 -0.5 -1 5 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  14. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 14 3 η τ energy density [GeV/fm ] ( = 0.0 , = 0.68 fm/c) J 0 s 9 pp @ 7TeV EPOS 3.119 y [fm] 2 8 1.5 7 1 6 0.5 5 0 4 -0.5 3 -1 2 1 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  15. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 15 3 η τ energy density [GeV/fm ] ( = 0.0 , = 0.87 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 1.5 4 1 3 0.5 0 2 -0.5 -1 1 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  16. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 16 3 η τ energy density [GeV/fm ] ( = 0.0 , = 1.06 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 2.5 1.5 2 1 0.5 1.5 0 1 -0.5 -1 0.5 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  17. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 17 3 η τ energy density [GeV/fm ] ( = 0.0 , = 1.25 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 1.4 1.5 1.2 1 1 0.5 0.8 0 0.6 -0.5 0.4 -1 0.2 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  18. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 18 3 η τ energy density [GeV/fm ] ( = 0.0 , = 1.44 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 0.9 1.5 0.8 0.7 1 0.6 0.5 0.5 0 0.4 -0.5 0.3 -1 0.2 0.1 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  19. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 19 3 η τ energy density [GeV/fm ] ( = 0.0 , = 1.63 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 0.6 1.5 0.5 1 0.4 0.5 0 0.3 -0.5 0.2 -1 0.1 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  20. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 20 3 η τ energy density [GeV/fm ] ( = 0.0 , = 1.83 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 0.45 1.5 0.4 0.35 1 0.3 0.5 0.25 0 0.2 -0.5 0.15 -1 0.1 0.05 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  21. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 21 3 η τ energy density [GeV/fm ] ( = 0.0 , = 2.02 fm/c) J 0 s 0.35 pp @ 7TeV EPOS 3.119 y [fm] 2 1.5 0.3 1 0.25 0.5 0.2 0 0.15 -0.5 0.1 -1 0.05 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  22. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 22 3 η τ energy density [GeV/fm ] ( = 0.0 , = 2.21 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 0.25 1.5 0.2 1 0.5 0.15 0 0.1 -0.5 -1 0.05 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  23. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 23 3 η τ energy density [GeV/fm ] ( = 0.0 , = 2.40 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 0.2 1.5 1 0.15 0.5 0 0.1 -0.5 0.05 -1 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  24. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 24 3 η τ energy density [GeV/fm ] ( = 0.0 , = 2.59 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 0.16 1.5 0.14 1 0.12 0.5 0.1 0 0.08 -0.5 0.06 -1 0.04 -1.5 0.02 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  25. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 25 Radial flow visible in particle distributions Particle spectra affected by radial flow 10 2 _ dn/dptdy π - K - p Λ hydrodynamics (solid) 10 string decay (dotted) 1 -1 10 -2 10 0 1 2 3 pt => mass ordering of � p t � , lambda/K increase

  26. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 26 pPb at 5TeV CMS,EPJC 74 (2014) 2847, arXiv:1307.3442 dn/dptdy dn/dptdy 4 K EPOS3.074 p EPOS3.074 3.5 CMS CMS 3.5 3 3 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 pt pt Strong variation of shape with multiplicity for kaon and even more for proton pt spectra (EPOS curves: flow changes shapes)

  27. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 27 Anisotropic radial flow visible in dihadron-correlations 1 dn R = d ∆ φ ∆ η N trigg Anisotropic flow due to initial azimuthal anisotropies

  28. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 28 Initial “elliptical” matter distribution: Preferred expansion φ along φ = 0 and φ = π η s -invariance same form at any η s η s = 1 2 ln t + z t − z

  29. COST WS Lund University # February 2019 # Klaus Werner # Subatech, Nantes 29 ∝ 1 + 2 v 2 cos ( 2 φ ) f( φ ) = dn / d φ 0.2 Particle 0.15 distribution: 0.1 Preferred directions 0.05 φ = 0 and φ = π 0 -1 0 1 2 3 4 φ Dihadrons: preferred ∆ φ = 0 and ∆ φ = π (even for big ∆ η )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend