multiple scattering in epos implications for charm
play

Multiple scattering in EPOS: Implications for charm production - PowerPoint PPT Presentation

MPI at the LHC 2015 Trieste Klaus Werner Subatech, Nantes 0-0 Multiple scattering in EPOS: Implications for charm production K.W. in collaboration with B. Guiot, Iu. Karpenko, T. Pierog MPI at the LHC 2015 Trieste


  1. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-0 Multiple scattering in EPOS: Implications for charm production K.W. in collaboration with B. Guiot, Iu. Karpenko, T. Pierog

  2. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-1 D-meson multiplicity vs charged multiplicity N / < N > ALICE Significant N D1 deviation N D2 10 from the N D4 N D8 diagonal (linear increase) 5 in particular diagonal for large p t 0 0 1 2 3 4 5 6 7 N ch / < N ch > ALICE arXiv:1505.00664v1

  3. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-2 PYTHIA 8.157

  4. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-3 Already understanding a linear increase is a challenge! (Only recent Pythia versions can do) Even much more the deviation from linear (towards higher values)

  5. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-4 Trying to understand these data in the EPOS framework: Two important issues: � Multiple scattering � Collectivity

  6. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-5 EPOS: Based on multiple scattering and flow Several steps: 1) Initial conditions: Gribov-Regge multiple scattering approach, elementary object = Pomeron = parton ladder, s λ (CGC) using saturation scale Q s ∝ N part ˆ 2) Core-corona approach to separate fluid and jet hadrons 3) Viscous hydrodynamic expansion , η/s = 0 . 08 4) Statistical hadronization, final state hadronic cascade arXiv:1312.1233 , arXix:1307.4379

  7. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-6 Initial conditions: Marriage pQCD+GRT+energy sharing (Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001) (squared amplitude) For pp, pA, AA: A � � cut uncut � � σ tot = G −G cut P uncut P B � �� � dσ exclusive cut Pom : G = 1 s ) exp( R 2 s 2Im {FT { T }} (ˆ s, b ) , T = i ˆ s σ hard (ˆ hard t ) 2ˆ s λ Nonlinear effects considered via saturation scale Q s ∝ N part ˆ

  8. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-7 A � � � � σ tot = i ) 2 + ( z A d 2 b d 2 b A i dz A ( b A i ) 2 ) i ρ A ( i =1 B � � j ) 2 + ( z B d 2 b B j dz B ( b B j ) 2 ) j ρ B ( j =1 �� � m k AB l k � � � � � � dx + x + . . . (1 − δ 0Σ m k ) k,µ dx − d ˜ k,λ d ˜ x − k,µ k,λ µ =1 m 1 l 1 m AB l AB k =1 λ =1 � 1 AB m k 1 � � k,µ , s, | � b + � π ( k ) − � G ( x + b A b B k,µ , x − τ ( k ) | ) m k ! l k ! µ =1 k =1 l k � � k,λ , s, | � b + � π ( k ) − � x + b A b B − G (˜ k,λ , ˜ x − τ ( k ) | ) λ =1 � α � A � � α B � � � � � � � x + x + x − x − 1 − k,µ, − ˜ 1 − k,µ − ˜ k,λ k,λ i =1 j =1 π ( k )= i π ( k )= i τ ( k )= j τ ( k )= j

  9. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-8 Core-corona procedure (for pp, pA, AA): Pomeron => parton ladder => flux tube (kinky string) ✗ ✔ String segments with high pt escape => corona , the others form the core = initial condition for hydro depending on the local string density ✖ ✕ 2 core- η = -1.00 y (fm) dn/dp t dy pions x 100 corona 10 3 1.5 pPb 10 2 1 EPOS3.076 0.5 10 protons 0 1 -1 10 -0.5 corona -2 10 -1 core -3 10 -1.5 5.7fm 5 Pomerons pPb 5TeV 20-40% -4 10 -2 0 2 4 6 -2 -1 0 1 2 p t x (fm)

  10. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-9 Core => Hydro evolution (Yuri Karpenko) Israel-Stewart formulation, η − τ coordinates, η/S = 0 . 08 , ζ/S = 0 ∂ ; ν T µν = ∂ ν T µν + Γ µ νλ T νλ + Γ ν νλ T µλ = 0 γ ( ∂ t + v i ∂ i ) π µν = − π µν − π µν γ ( ∂ t + v i ∂ i ) Π = − Π − Π NS NS + I µν + I Π π τ π τ Π � T µν = ǫu µ u ν − ( p + Π)∆ µν + π µν , � π µν NS = η (∆ µλ ∂ ; λ u ν + ∆ νλ∂ ; λ u µ ) − 2 3 η ∆ µν ∂ ; λ u λ � ∂ ; ν denotes a covariant derivative, � Π NS = − ζ∂ ; λ u λ � ∆ µν = g µν − u µ u ν is the projector or- � I µν 3 π µν ∂ ; γ u γ − [ u ν π µβ + u µ π νβ ] u λ ∂ ; λ u β = − 4 thogonal to u µ , π � I Π = − 4 3 Π ∂ ; γ u γ � π µν , Π shear stress tensor, bulk pressure � Freeze out: at 168 MeV, Cooper-Frye E dn d Σ µ p µ f ( up ) , d 3 p = equilibrium distr Hadronic afterburner: UrQMD Marcus Bleicher, Jan Steinheimer

  11. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-10 Results Detailed studies of pt spectra and azimuthal anisotropies (dihadron corr., v n ) in pp, pA: � arXiv:1312.1233 [nucl-th]. Published in Phys.Rev. C89 (2014) 6, 064903. � arXiv:1307.4379 [nucl-th]. Published in Phys.Rev.Lett. 112 (2014) 23, 232301. � arXiv:1011.0375 [hep-ph]. Published in Phys.Rev.Lett. 106 (2011) 122004 � arXiv:1004.0805 [nucl-th]. Published in Phys.Rev. C82 (2010) 044904. In the follwing : An example of an asymmetric space-time evolution (high mult pp event, 7TeV)

  12. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-11 3 η τ energy density [GeV/fm ] ( = 0.0 , = 0.10 fm/c) J 0 s 350 pp @ 7TeV EPOS 3.119 y [fm] 2 1.5 300 1 250 0.5 200 0 150 -0.5 100 -1 50 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  13. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-12 3 η τ energy density [GeV/fm ] ( = 0.0 , = 0.29 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 60 1.5 1 50 0.5 40 0 30 -0.5 20 -1 10 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  14. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-13 3 η τ energy density [GeV/fm ] ( = 0.0 , = 0.48 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 1.5 20 1 15 0.5 0 10 -0.5 -1 5 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  15. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-14 3 η τ energy density [GeV/fm ] ( = 0.0 , = 0.68 fm/c) J 0 s 9 pp @ 7TeV EPOS 3.119 y [fm] 2 8 1.5 7 1 6 0.5 5 0 4 -0.5 3 -1 2 1 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  16. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-15 3 η τ energy density [GeV/fm ] ( = 0.0 , = 0.87 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 1.5 4 1 3 0.5 0 2 -0.5 -1 1 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  17. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-16 3 η τ energy density [GeV/fm ] ( = 0.0 , = 1.06 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 2.5 1.5 2 1 0.5 1.5 0 1 -0.5 -1 0.5 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  18. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-17 3 η τ energy density [GeV/fm ] ( = 0.0 , = 1.25 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 1.4 1.5 1.2 1 1 0.5 0.8 0 0.6 -0.5 0.4 -1 0.2 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  19. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-18 3 η τ energy density [GeV/fm ] ( = 0.0 , = 1.44 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 0.9 1.5 0.8 0.7 1 0.6 0.5 0.5 0 0.4 -0.5 0.3 -1 0.2 0.1 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  20. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-19 3 η τ energy density [GeV/fm ] ( = 0.0 , = 1.63 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 0.6 1.5 0.5 1 0.4 0.5 0 0.3 -0.5 0.2 -1 0.1 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  21. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-20 3 η τ energy density [GeV/fm ] ( = 0.0 , = 1.83 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 0.45 1.5 0.4 0.35 1 0.3 0.5 0.25 0 0.2 -0.5 0.15 -1 0.1 0.05 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  22. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-21 3 η τ energy density [GeV/fm ] ( = 0.0 , = 2.02 fm/c) J 0 s 0.35 pp @ 7TeV EPOS 3.119 y [fm] 2 1.5 0.3 1 0.25 0.5 0.2 0 0.15 -0.5 0.1 -1 0.05 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  23. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-22 3 η τ energy density [GeV/fm ] ( = 0.0 , = 2.21 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 0.25 1.5 0.2 1 0.5 0.15 0 0.1 -0.5 -1 0.05 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  24. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-23 3 η τ energy density [GeV/fm ] ( = 0.0 , = 2.40 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 0.2 1.5 1 0.15 0.5 0 0.1 -0.5 0.05 -1 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

  25. MPI at the LHC– 2015 – Trieste – Klaus Werner – Subatech, Nantes 0-24 3 η τ energy density [GeV/fm ] ( = 0.0 , = 2.59 fm/c) J 0 s pp @ 7TeV EPOS 3.119 y [fm] 2 0.16 1.5 0.14 1 0.12 0.5 0.1 0 0.08 -0.5 0.06 -1 0.04 0.02 -1.5 0 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x [fm]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend