insulator to superfluid superconductor transition in 2
play

Insulator to Superfluid/Superconductor Transition in 2 - PowerPoint PPT Presentation

Insulator to Superfluid/Superconductor Transition in 2 dimensions Nandini Trivedi Physics Department The Ohio State University trivedi.15@osu.edu http://trivediresearch.org.ohio-state.edu/ Conference on Frontiers in


  1. Insulator ¡to ¡Superfluid/Superconductor ¡ Transition in ¡2 ¡dimensions Nandini Trivedi Physics Department The Ohio State University trivedi.15@osu.edu http://trivediresearch.org.ohio-­‑state.edu/ Conference on Frontiers in Two-Dimensional Quantum Systems, ICTP, Trieste Nov 13-17, 2017

  2. Can an insulator become a SC? How does SC arise when there is no no Fermi surface?

  3. Roadmap: Semi-Metal à Topological SC ? Insulator à SC Proximate Insulator Metal à SC BCS Eliashberg

  4. Metal: Electron Waves Instability of Fermi surface p y Binding p F energy ∆ of pair g p x ∆ ∼ E m e − 1 wave length of electron wave p = h/ λ g E F = p 2 Fermi energy F ∆ < E m < E F 2 m

  5. BCS Prediction ∆ /T c = 1 . 8 Binding energy of Δ vs ¡Tc pair or Energy 35 gap in single 30 particle spectrum @T=0 25 Tc(K) 20 Al 1.2 Δ (meV) Pb 7.2 15 Nb 9.2 10 Nb 3 Ge 20.0 5 MgB2 38.6 0 0.0 50.0 100.0 150.0 200.0 250.0 H 3 S 203.0 Tc ¡(K) Transition temp 1 meV ~ 10K

  6. GAP vs Tc Δ vs ¡Tc 2Δ/Tc vs ¡Tc 60 30 50 25 40 20 BCS BCS Δ (meV) Cuprate 30 2Δ/Tc Cuprate 15 FeSC FeSC BCS ¡Theory BCS ¡Theory 20 10 2Δ/kB ¡Tc ¡= ¡3.53 2Δ/kB ¡Tc ¡= ¡3.53 10 5 0 0 0.0 50.0 100.0 150.0 200.0 250.0 0.0 50.0 100.0 150.0 200.0 250.0 Tc ¡(K) Tc ¡(K)

  7. Another way the BCS paradigm can break down if T c ⌧ E mode ⌧ E F (1) Strong coupling to glue: Fermi sphere greatly perturbed (2) non-adiabatic limit: electrons are slower than the mode E F τ e > τ mode E mode E F < E mode Bismuth: E F =25 meV E mode= 12 meV Tc= 0.5 mK~0.05 meV Prakash, Kumar, Thamizhavel, Ramakrishnan, Science 355, 52–55 (2017)

  8. How can the BCS paradigm break down? (1) Strong coupling to glue: Fermi sphere greatly perturbed T c ∼ ∆ × (2) Non-adiabatic limit: electrons are sl er than the mode slow ower ∆ ∼ E m e − 1 × g

  9. Strong glue: BCS-BEC Crossover weak attraction: strong attraction: pairing and coherence pairing and coherence occur at the same occur at different temperature temperatures attraction BCS limit T c = min( Δ 0 , ρ S ) • cooperative BEC limit Cooper pairing • tightly bound • pair size molecules • pair size M. Randeria and E. Taylor, Ann. Rev. Cond. Mat. Phys. 5 , 209 (2014)

  10. Superfluid density and stiffness n s = superfluid number density 4 π n s e 2 p,s = c 2 = ω 2 r s = sf mass density λ 2 w s = sf plasma frequency scale m ∗ L London penetration depth F = 1 Z d d x | r θ | 2 2 D s directly related to the spectral weight in the delta function in the optical conductivity [ D s ] = Energy L d − 2 dim=2 Layered dim=3 D s ∼ ~ 2 n 2 / 3 D s ∼ ~ 2 D s ∼ ~ 2 n s s m ∗ n s m ∗ d m ∗

  11. Insulator: charge cannot move Band C-Mott S-Mott Pauli Attraction Repulsion Ω | "#i� | #"i singlet + many other examples of insulators including disordered (localized) insulators

  12. Superconductivity domes Tc scale set by electronic energies not necessarily by coupling to a mode T c ~ r s g g: Driven by pressure, magnetic field, doping, gating

  13. CeRhIn 5 Cuprates Pnictides BaPb 1-x Bi x O 3 (Heavy ¡Fermion) P . Giraldo-Gallo et al. (I. Fisher), PRB 85 85 , 174503 D. N. Basov & Andrey V. Chubukov, Nature Phys. 7 , 272 (2011) (2012),; Nature Comm. 6 , 8231 (2015) Organic Superconductors SrTiO 3 Georg Knebel, Dai Aoki, Jacques κ -­‑(ET) 2 Cu 2 (CN) 3 Flouquet, arXiv:0911.5223 SrTiO 3-­‑δ SrTi 1-­‑x Nb x O 3 Kurosaki et al. (Saito), PRL Xiao Lin et al. (K. Behnia), PRL 112 112 , 207002 (2014) 95 95 , 177001 (2005)

  14. arXiv:1703.06369 A full superconducting dome of strong Ising protection in gated monolayer WS 2 J. M. Lu, O. Zheliuk, Q. H. Chen, I. Leermakers, N. E. Hussey, U. Zeitler, J. T. Ye

  15. Band Insulator à SC Ω Fermi Bose BEC BCS Insulator Insulator crossover crossover SC- Insulator Transition Loh, Randeria, Trivedi, Chen, Scalettar, : Superconductor-Insulator Transition and Fermi-Bose Crossovers” Phys. Rev. X 6, 021029 (2016)

  16. t Ω # of states energy Ω µ µ µ # of states # of states Fermi Metal Band Insulator energy energy t/ Ω

  17. Fixed attraction U Fermi Bose BEC BCS Insulator Insulator crossover crossover SC- Insulator Transition U=0 U 6 = 0 Ω E 1 p = Ω E 2 p = 2 Ω Ω t/ Ω Increase hopping t between wells

  18. The ¡Model 2D Fermion model for band-insulator à SC transition • Translationally invariant; no disorder • (at least) 2 sites/orbitals per unit cell à 2 bands in insulator • Attractive interactions à SC local attraction -|U| à no sign-problem in QMC à possible to realize in cold atoms expts. • Non-bipartite lattice à suppress CDW order Triangular lattice bilayer Checkerboard ✗ ✓

  19. The ¡Model Triangular ¡bilayer ¡attractive ¡Hubbard ¡model | U | /t ⊥ Fix T =0, t ⊥ = 1 h n i = 1 attraction t/t ⊥ band structure

  20. Methods attraction Strong coupling Boson regime “atomic” limit Fermion Determinantal Quantum Monte Carlo (QMC) Diagrams & Mean-field theory Changing band structure

  21. Non-­‑interacting Non-interacting Limit BEC BEC U t 2 U t 2 BI BI (Fermion) 1.5 BCS 1.5 BCS (Fermion) Band Superconductor Band Metal Insulator for |U| > 0 FI FI Insulator for |U|=0 0 0 0 2 9 0 2 9 t t t t Compensated (semi)metal with Electron & Hole FS’s

  22. Atomic LIMITS: t=0 ATOMIC BI 2 FI Metal 0 0 2/9

  23. Atomic Atomic Limit: Insulators Atomic Limit: t k = 0 µ = 0 N=0,1,2,3,4 FI BI E gap < ω pair E gap > ω pair

  24. Weakly ¡interacting Pa Pairing ng Ins nstability in n a Band nd Ins nsul ulator ¼ 1 − 2 f k χ 0 ð ω Þ ¼ 1 X BI 2 ε k − ω − i 0 þ N k 2 pair susceptibility Im χ ( q = 0 , ω ) FI Metal 0 0 2/9 ω pair o Pole in à Gap to pair excitations in Insulator = 2-particle gap à 0 at SIT

  25. Weakly ¡interacting Pa Pairing ng Ins nstability in n a Band nd Ins nsul ulator BI Single-particle 2 (band) gap in Insulator, Finite at SIT FI Metal 0 0 2/9 Insulator o Divergence of pairing à transition from insulator to SC Note: near the SIT t t SIT

  26. MFT Mean Field Theory for SC state Single-particle Energy Gap FI BI BEC BCS Band gap in Insulator 1.0 E g BCS ¡ à BEC BEC regime 0.8 near SIT energy scales t SC gap in BCS regime 0.6 pair 0.4 Superfluid Stiffness 1 0.2 E g0 D s even outside the BEC regime 0.0 à phase fluctuation dominate 0.0 0.1 0.2 0.3 0.4 t t Superconductor Insulator SIT

  27. attraction Strong coupling Bosons Actual Phase Diagram Diagrams & MFT “ atomic ” limit (a) QMC BEC BI BEC U Diagrams & MFT U t 2 BI t 1.5 BCS 2 band structure BCS FI FI 0 0 2 9 0 t t 0 2 9 t t Determinental Quantum Monte Carlo Attractive Hubbard -- Free of fermion sign-problem at all fillings

  28. (a) BI BEC U t 2 BCS FI 0 0 2 9 t t

  29. Single-Particle Density of States Intermediate ¡coupling: ¡QMC From QMC + Maximum Entropy (a) SC BI BEC U t SIT 2 BCS Insulator FI 0 0 2 9 t t Persistence of single-particle gap across the SC-Insulator transition Can see gap directly from imaginary time QMC data without analytic continuation onset of both across the SIT for 12 × 12 × 2 bilayer at T ¼ 0 . 0803 t ⊥ . ed j U j =t ⊥ ¼ 4 . (b) N for specific text) and (b) superflu (not shown).

  30. QMC: Pairing structure factor QMC: Superfluid density P s = 1 h c † i ↑ c † X i ↓ c j ↓ c j ↑ i N i,j Λ xx ( r i , r j , t ) = h j x ( r i , t ) j † x ( r j , 0) i off diagonal long range order T/t ⊥ = 0 . 08 U/t ⊥ = 4 INS SF INS SF QMC

  31. How to identify the BCS & BEC regimes in the crossover? 2 Predictions: • Topology of “Minimum Gap Locus”– ARPES (angle resolved photoemission spectroscopy) • Gap-edge singularity in DOS – tunneling

  32. Fermion Spectral function Angle resolved photoelectron spectroscopy • = probability to make an excitation rf spectroscopy • at momentum k and energy w Single particle Green function Spectral function 11/19/17

  33. BCS: minimum gap locus at k F A ( k, ω ) = u 2 k δ ( ω − E k ) + v 2 k δ ( ω + E k ) q ξ 2 E k = ± k + | ∆ k | 2 ✓ ◆ k = 1 1 − ξ k u 2 k + v 2 v 2 k = 1 2 E k v 2 u 2 k k k F Minimum gap at k=k F

  34. BEC regime (“strong pairing”) BCS regime (“weak pairing”) Mi Minimum gap loc ocus in k-sp space point contour ✏ k = 0 ✏ k = µ or or k = 0 k = “ k F ”

  35. Crossover from BCS to BEC regime * Topology of “Minimum Gap Locus” * Gap-edge singularity in DOS ß BCS ß BEC BEC BEC BCS 1/(square-root) Min gap locus is DOS has jump Min gap locus is In DOS point discontinuity (2D) contour

  36. How to identify the BCS & BEC regimes in the crossover? * Topology of “Minimum Gap Locus” * Gap ap-ed edge e sing ngul ularity in n DOS BCS 1/(square-root) Min gap locus is In DOS contour

  37. Single ¡particle ¡gap 37

  38. Tamaghna Hazra 38

  39. BCS-­‑BEC ¡Crossover ¡: ¡Topology ¡of ¡Minimum ¡gap ¡locus Minimum ¡gap ¡locus ¡ Minimum ¡gap ¡ is ¡a ¡contour ¡at locus ¡is ¡a ¡point at ✏ k = µ k=0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend