electron bubbles and weyl fermions in chiral superfluid 3
play

Electron bubbles and Weyl fermions in chiral superfluid 3 He-A - PowerPoint PPT Presentation

Electron bubbles and Weyl fermions in chiral superfluid 3 He-A Oleksii Shevtsov James A. Sauls Northwestern University, Evanston, IL 60208 USA October 12, 2016 (1) Introduction to superfluid 3 He and e -bubbles (2) Transport and AHE of e


  1. Electron bubbles and Weyl fermions in chiral superfluid 3 He-A Oleksii Shevtsov James A. Sauls Northwestern University, Evanston, IL 60208 USA October 12, 2016 (1) Introduction to superfluid 3 He and e -bubbles (2) Transport and AHE of e -bubbles in 3 He-A: Experiments (3) Structure and transport of e -bubbles in 3 He-A: Theory [O. Shevtsov and J. A. Sauls, PRB 94, 064511 (2016)]

  2. Symmetry group of normal-state 3 He : G = SO ( 3 ) S × SO ( 3 ) L × U ( 1 ) N × P × T BW state (B-phase): J = 0 , J z = 0 34 A 30 T AB 24 B p/ bar 18 p PCP 12 A µ j = ∆ δ µ j T c 6 ABM state (A-phase): 0 L z = 1 , S z = 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 T/ mK J. J. Wiman and J. A. Sauls PRB 92 , 144515 (2015) Spin-triplet p -wave order parameter: ∆ αβ ( k ) = � d ( k ) · ( i � σ σ y ) αβ , d µ ( k ) = A µ j k j A µ j = ∆ˆ d µ ( ˆ m + i ˆ n ) j

  3. Magnetic field B : suppresses the | ↑↓� + | ↓↑� spin component in the order parameter makes the A-phase ( | ↑↑� + | ↓↓� ) more favorable at critical temperature T c Ikegami et al. J. Phys. Soc. Jpn. 84 , 044602 (2015)

  4. Magnetic field B : suppresses the | ↑↓� + | ↓↑� spin component in the order parameter makes the A-phase ( | ↑↑� + | ↓↓� ) more favorable at critical temperature T c Ikegami et al. J. Phys. Soc. Jpn. 84 , 044602 (2015) Edge states spectrum:

  5. Electron bubbles in liquid 3 He Bubble with R ≃ 1 . 5 nm, QPs mean free path l ≫ R , λ f ≪ R ≪ ξ 0 Knudsen limit Effective mass M ≃ 100 m 3 Normal-state mobility is const ( m 3 – atomic mass of 3 He) below T = 50 mK

  6. Electron bubbles in chiral superfluid 3 He-A k ) = ∆ k x + ik y ∆ A (ˆ k f v AH v E � �� � ���� µ AH E × ˆ Electric current: v = µ ⊥ E + l Salmelin et al. PRL 63 , 868 (1989) Hall ratio: tan α = v AH / v E = | µ AH /µ ⊥ |

  7. Mobility of e -bubbles in 3 He-A (Ikegami et al., RIKEN) Science 341 , 59 (2013); JPSJ 82 , 124607 (2013); JPSJ 84 , 044602 (2015) v AH v E � �� � ���� µ AH E × ˆ Electric current: v = µ ⊥ E + Hall ratio: tan α = v AH / v E = | µ AH /µ ⊥ | l ;

  8. Mobility of e -bubbles in 3 He-A (Ikegami et al., RIKEN) Science 341 , 59 (2013); JPSJ 82 , 124607 (2013); JPSJ 84 , 044602 (2015) v AH v E � �� � ���� µ AH E × ˆ Electric current: v = µ ⊥ E + Hall ratio: tan α = v AH / v E = | µ AH /µ ⊥ | l ;

  9. Mobility of e -bubbles in 3 He-A (Ikegami et al., RIKEN) Science 341 , 59 (2013); JPSJ 82 , 124607 (2013); JPSJ 84 , 044602 (2015) v AH v E � �� � ���� µ AH E × ˆ Electric current: v = µ ⊥ E + Hall ratio: tan α = v AH / v E = | µ AH /µ ⊥ | l ;

  10. Mobility of e -bubbles in 3 He-A (Ikegami et al., RIKEN) Science 341 , 59 (2013); JPSJ 82 , 124607 (2013); JPSJ 84 , 044602 (2015) v AH v E � �� � ���� µ AH E × ˆ Electric current: v = µ ⊥ E + Hall ratio: tan α = v AH / v E = | µ AH /µ ⊥ | l ; tan α

  11. Equation of motion for e -bubbles in 3 He-A: (i) M d v dt = e E + F QP , F QP – force due to quasiparticle scattering

  12. Equation of motion for e -bubbles in 3 He-A: (i) M d v dt = e E + F QP , F QP – force due to quasiparticle scattering (ii) F QP = − ↔ ↔ η · v , η – generalized Stokes tensor

  13. Equation of motion for e -bubbles in 3 He-A: (i) M d v dt = e E + F QP , F QP – force due to quasiparticle scattering (ii) F QP = − ↔ ↔ η · v , η – generalized Stokes tensor   η ⊥ η AH 0 (iii) ↔ in superfluid 3 He-A with ˆ η = − η AH η ⊥ 0 l � e z   0 0 η �

  14. Equation of motion for e -bubbles in 3 He-A: (i) M d v dt = e E + F QP , F QP – force due to quasiparticle scattering (ii) F QP = − ↔ ↔ η · v , η – generalized Stokes tensor   η ⊥ η AH 0 (iii) ↔ in superfluid 3 He-A with ˆ η = − η AH η ⊥ 0 l � e z   0 0 η � (iv) M d v dt = e E − η ⊥ v + e for E ⊥ ˆ c v × B eff , l

  15. Equation of motion for e -bubbles in 3 He-A: (i) M d v dt = e E + F QP , F QP – force due to quasiparticle scattering (ii) F QP = − ↔ ↔ η · v , η – generalized Stokes tensor   η ⊥ η AH 0 (iii) ↔ in superfluid 3 He-A with ˆ η = − η AH η ⊥ 0 l � e z   0 0 η � (iv) M d v dt = e E − η ⊥ v + e for E ⊥ ˆ c v × B eff , l (v) B eff = − c B eff ≃ 10 3 − 10 4 T !!! e η AH ˆ l ,

  16. Equation of motion for e -bubbles in 3 He-A: (i) M d v dt = e E + F QP , F QP – force due to quasiparticle scattering (ii) F QP = − ↔ ↔ η · v , η – generalized Stokes tensor   η ⊥ η AH 0 (iii) ↔ in superfluid 3 He-A with ˆ η = − η AH η ⊥ 0 l � e z   0 0 η � (iv) M d v dt = e E − η ⊥ v + e for E ⊥ ˆ c v × B eff , l (v) B eff = − c B eff ≃ 10 3 − 10 4 T !!! e η AH ˆ l , (vi) d v − 1 v = ↔ ↔ µ = e ↔ dt = 0 µ E , where η � µ � = e η ⊥ η AH , µ ⊥ = e , µ AH = − e η � η 2 ⊥ + η 2 η 2 ⊥ + η 2 AH AH

  17. Scattering of Bogoliubov QPs off the negative ion

  18. Scattering of Bogoliubov QPs off the negative ion (i) Lippmann-Schwinger equation for the retarded T -matrix ( ε = E + i η , η → 0 + ): � d 3 k ′′ � � ˆ S ( k ′ , k , E )= ˆ ( 2 π ) 3 ˆ ˆ S ( k ′′ , E ) − ˆ ˆ T R T R N ( k ′ , k ) + T R N ( k ′ , k ′′ ) G R G R N ( k ′′ , E ) T R S ( k ′′ , k , E )

  19. Scattering of Bogoliubov QPs off the negative ion (i) Lippmann-Schwinger equation for the retarded T -matrix ( ε = E + i η , η → 0 + ): � d 3 k ′′ � � ˆ S ( k ′ , k , E )= ˆ ( 2 π ) 3 ˆ ˆ S ( k ′′ , E ) − ˆ ˆ T R T R N ( k ′ , k ) + T R N ( k ′ , k ′′ ) G R G R N ( k ′′ , E ) T R S ( k ′′ , k , E ) � � − ∆(ˆ � k ) | 2 , ξ k = � 2 k 2 1 ε + ξ k k ) ˆ k + | ∆(ˆ G R ξ 2 S ( k , E ) = , E k = 2 m ∗ − µ ε 2 − E 2 − ∆ † (ˆ k ) ε − ξ k k

  20. Scattering of Bogoliubov QPs off the negative ion (i) Lippmann-Schwinger equation for the retarded T -matrix ( ε = E + i η , η → 0 + ): � d 3 k ′′ � � ˆ S ( k ′ , k , E )= ˆ ( 2 π ) 3 ˆ ˆ S ( k ′′ , E ) − ˆ ˆ T R T R N ( k ′ , k ) + T R N ( k ′ , k ′′ ) G R G R N ( k ′′ , E ) T R S ( k ′′ , k , E ) � � − ∆(ˆ � k ) | 2 , ξ k = � 2 k 2 1 ε + ξ k k ) ˆ k + | ∆(ˆ G R ξ 2 S ( k , E ) = , E k = 2 m ∗ − µ ε 2 − E 2 − ∆ † (ˆ k ) ε − ξ k k (ii) Normal-state T -matrix: � � N (ˆ k ′ , ˆ t R k ) 0 ˆ N (ˆ k ′ , ˆ T R k ) = in p-h (Nambu) space N ( − ˆ k ′ , − ˆ − [ t R k )] † 0

  21. Scattering of Bogoliubov QPs off the negative ion (i) Lippmann-Schwinger equation for the retarded T -matrix ( ε = E + i η , η → 0 + ): � d 3 k ′′ � � ˆ S ( k ′ , k , E )= ˆ ( 2 π ) 3 ˆ ˆ S ( k ′′ , E ) − ˆ ˆ T R T R N ( k ′ , k ) + T R N ( k ′ , k ′′ ) G R G R N ( k ′′ , E ) T R S ( k ′′ , k , E ) � � − ∆(ˆ � k ) | 2 , ξ k = � 2 k 2 1 ε + ξ k k ) ˆ k + | ∆(ˆ G R ξ 2 S ( k , E ) = , E k = 2 m ∗ − µ ε 2 − E 2 − ∆ † (ˆ k ) ε − ξ k k (ii) Normal-state T -matrix: � � N (ˆ k ′ , ˆ t R k ) 0 ˆ N (ˆ k ′ , ˆ T R k ) = in p-h (Nambu) space, where N ( − ˆ k ′ , − ˆ − [ t R k )] † 0 ∞ k ) = − 1 � k ′ · ˆ N (ˆ k ′ , ˆ ( 2 l + 1 ) e i δ l sin δ l P l (ˆ t R k ) , P l – Legendre polynomial π N f l = 0

  22. Scattering of Bogoliubov QPs off the negative ion (i) Lippmann-Schwinger equation for the retarded T -matrix ( ε = E + i η , η → 0 + ): � d 3 k ′′ � � ˆ S ( k ′ , k , E )= ˆ ( 2 π ) 3 ˆ ˆ S ( k ′′ , E ) − ˆ ˆ T R T R N ( k ′ , k ) + T R N ( k ′ , k ′′ ) G R G R N ( k ′′ , E ) T R S ( k ′′ , k , E ) � � − ∆(ˆ � k ) | 2 , ξ k = � 2 k 2 1 ε + ξ k k ) ˆ k + | ∆(ˆ G R ξ 2 S ( k , E ) = , E k = 2 m ∗ − µ ε 2 − E 2 − ∆ † (ˆ k ) ε − ξ k k (ii) Normal-state T -matrix: � � N (ˆ k ′ , ˆ t R k ) 0 ˆ N (ˆ k ′ , ˆ T R k ) = in p-h (Nambu) space, where N ( − ˆ k ′ , − ˆ − [ t R k )] † 0 ∞ k ) = − 1 � k ′ · ˆ N (ˆ k ′ , ˆ ( 2 l + 1 ) e i δ l sin δ l P l (ˆ t R k ) , P l – Legendre polynomial π N f l = 0 Hard-sphere model � tan δ l = j l ( k f R ) / n l ( k f R ) , j l , n l – spherical Bessel fn-s k f R – the only adjustable parameter (to be determined)!

  23. From T-matrix to drag force (i) QP scattering rate – Fermi’s golden rule: Γ( k ′ , k ) = 2 π � W (ˆ k ′ , ˆ k ) δ ( E k ′ − E k )

  24. From T-matrix to drag force (i) QP scattering rate – Fermi’s golden rule: Γ( k ′ , k ) = 2 π k ) = 1 � � � W (ˆ k ′ , ˆ k ) δ ( E k ′ − E k ) , W (ˆ k ′ , ˆ |� out k ′ ,σ ′ | ˆ T S | in k ,σ �| 2 2 σ,σ ′ = ↑ , ↓ in , out

  25. From T-matrix to drag force (i) QP scattering rate – Fermi’s golden rule: Γ( k ′ , k ) = 2 π k ) = 1 � � � W (ˆ k ′ , ˆ k ) δ ( E k ′ − E k ) , W (ˆ k ′ , ˆ |� out k ′ ,σ ′ | ˆ T S | in k ,σ �| 2 2 σ,σ ′ = ↑ , ↓ in , out (ii) Drag force from QP-ion collisions (linear in v ): Baym et al. PRL 22 , 20 (1969) � � � � �� − ∂ f k ′ − ∂ f k � � ( k ′ − k ) � k ′ v f k Γ( k ′ , k ) F QP = − − � kv ( 1 − f k ′ ) ∂ E ∂ E k , k ′

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend