luttinger liquid
play

Luttinger Liquid Alexander Chudnovskiy Hamburg Unversity Luttinger - PowerPoint PPT Presentation

Luttinger Liquid Alexander Chudnovskiy Hamburg Unversity Luttinger Liquid Luttinger liquid concept Bosonization in operator approach Conformal field theory approach Examples of correlation functions References: J. Voit, Rep. Prog.


  1. Luttinger Liquid Alexander Chudnovskiy Hamburg Unversity

  2. Luttinger Liquid • Luttinger liquid concept • Bosonization in operator approach • Conformal field theory approach • Examples of correlation functions References: J. Voit, Rep. Prog. . Phys. 57 , 977-1116 (1994). A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, “Bosonization and strongly correlated systems”, Cambridge University Press, 1998. T. Giamarchi, “Quantum physics in one dimension”, Oxford University Press, 2003. 2

  3. Fermi liquid in 1D and in higher dimensions • quasiparticles are electrons and holes (fermions) ! T 2 • quasiparticles do not decay if close to the Fermi surface (decay rate )

  4. Fermi liquid in 1D and in higher dimensions • quasiparticles are electrons and holes (fermions) ! T 2 • quasiparticles do not decay if close to the Fermi surface (decay rate ) Particle-hole excitations q : E p + q ! E p = 0 q : E p + q ! E p " ! F q the momentum does not fix the energy ph-excitations are not coherent

  5. Fermi liquid in 1D and in higher dimensions • quasiparticles are electrons and holes (fermions) ! T 2 • quasiparticles do not decay if close to the Fermi surface (decay rate ) Particle-hole excitations Particle-hole excitations in 1D q : E p + q ! E p " ! F q q : E p + q ! E p = 0 q : E p + q ! E p " ! F q the momentum does not fix the energy the momentum fixes the energy ph-excitations are not coherent ph-extitations are coherent quasiparticles

  6. Fermi liquid in 1D and in higher dimensions • quasiparticles are electrons and holes (fermions) ! T 2 • quasiparticles do not decay if close to the Fermi surface (decay rate ) Particle-hole excitations Particle-hole excitations in 1D q : E p + q ! E p " ! F q q : E p + q ! E p = 0 q : E p + q ! E p " ! F q the momentum does not fix the energy the momentum fixes the energy ph-excitations are not coherent ph-extitations are coherent quasiparticles

  7. Fermi liquid in 1D: linearization of dispersion E k k ! = 2 !" F L Finite system: equidistant spectrum

  8. Hamiltonian of 1D interacting electron system: Luttinger liquid model { } " " ! 0 = + + v F ( k ! k F ): c R , k ! c R , k ! : ! v F ( k + k F ): c L , k ! H c L , k ! : ! k ! ! O ! : = O ! : … : - normal ordering with respect to the Fermi see: : O FS . ! ! + + + Density fluctuations: ! r , " ( p ) = = c r , k , " " # p ,0 c r , k , " : c r , k + p , " c r , k , " : c r , k + p , " c r , k , " . k k

  9. Hamiltonian of 1D interacting electron system: Luttinger liquid model { } " " ! 0 = + + v F ( k ! k F ): c R , k ! c R , k ! : ! v F ( k + k F ): c L , k ! H c L , k ! : ! k ! ! O ! : = O ! : … : - normal ordering with respect to the Fermi see: : O FS . ! ! + + + Density fluctuations: ! r , " ( p ) = = c r , k , " " # p ,0 c r , k , " : c r , k + p , " c r , k , " : c r , k + p , " c r , k , " . k k Interactions: take into account the small momentum transfer only ! 2 = 1 ' # % g 2 ! ( p ) ! " , ! ' + g 2 ! ( p ) ! " , " ! ' ! R " ( p ) ! L " ( " p ) H $ & L p , ! , ! '

  10. Hamiltonian of 1D interacting electron system: Luttinger liquid model { } " " ! 0 = + + v F ( k ! k F ): c R , k ! c R , k ! : ! v F ( k + k F ): c L , k ! H c L , k ! : ! k ! ! O ! : = O ! : … : - normal ordering with respect to the Fermi see: : O FS . ! ! + + + Density fluctuations: ! r , " ( p ) = = c r , k , " " # p ,0 c r , k , " : c r , k + p , " c r , k , " : c r , k + p , " c r , k , " . k k Interactions: take into account the small momentum transfer only ! 4 = 1 ' ' # % g 4 ! ( p ) ! " , ! ' + g 4 ! ( p ) ! " , " ! ' : ! r " ( p ) ! r " ' ( " p ): H $ & 2 L r = R , L p , ! , ! '

  11. Symmetries of the Hamiltonian The Hamiltonian commutes with the total number of particles in each branch and with a given spin-projection ! ! N r ! = + ! # $ = 0. c r , k , ! c r , k , ! : N r ! , H " k ! # N r ! , ! r , p , ! $ = 0; " % % + c k + ( ! k ', k + p + c k + p + c k ' ) c k & + ( ! kk ' + c k ' ! # + c k ' , c k + p = + c k ) c k ' ) = c k ' ( c k ' c k + p " $ k , k ' k , k ' ( ) % + c k + c k ' + c k ' c k & c k + p + c k & c k + p + c k ' + c k + p + c k c k ' = 0 c k + p k For the election wave function: ! r " ( x ) ! e i # r " ! r " ( x )

  12. Symmetries of the Hamiltonian ! r " ( x ) ! e i # ! r " ( x ) U(1) SYMMETRY # ! R " ( x ) ! e i # ! R " ( x ) % $ CHIRAL SYMMETRY ! L " ( x ) ! e " i # ! L " ( x ) % & SU(2) SPIN SYMMETRY, IF g 2, ! = g 2, ! ( ) ! " # e i ! " " ! r " ( x ) ! ! r " ' ( x ) " ' "" '

  13. Boson solution of the Luttinger model Map the fermion problem with interactions to the problem of noninteracting bosons • Density operators obey bosonic commutation relations: relation to canonical bosonic creation/annihilation operators � • Hamiltonian can be represented as a bilinear of the density operators � • Explicit construction of a fermion through the bosonic operators

  14. Commutator of the density operators ( ) ( ) & & ! ! + c k c k ' ! p ' + c k + c k + p ' ! c k + p ! p ' " $ + + + ! p , ! % = c k ' ! c k ' ! p ' = c k + p c k ' c k + p c k + p c k Right-movers: # ! p ' k , k ' k ( ) & + c k + p ' : ! : c k + p ! p ' + c k + p ' = + c k : + c k + p 0 ! c k + p ! p ' + : c k + p c k 0 k ( ) = ! pL & + c k + p + c k = " pp ' 0 ! c k 2 # " pp ' c k + p 0 k ! k = 2 " + c k + p 0 = 0 c k + p L + c k 0 = 1 c k

  15. Commutator of the density operators U(1) Kac-Moody algebra % = ! pL % = pL ! ! ! ! " $ " $ ! p , ! 2 " # pp ' ! L , p , ! 2 " # pp ' Right-movers: Left-movers: # # ! p ' L , ! p ' $ = i $ = % i ! ! ! ! ! # ! # ! R ( x ), ! 2 " % x # ( x & x ') ! L ( x ), ! 2 " & x # ( x % x ') R ( x ') L ( x ') " " Relation between the density operators and canonical bosons 2 " 2 " % = pL + ( p ), (p>0). ! ! ! ! L ( p ), ! ! ! L " $ ! L , p , ! 2 " # pp ' & ! L , p = L , ! p = pL b pL b # L , ! p ' 2 " 2 " + ( p ), ! % = ! pL ! ! ! ! R ! ! R ( p ), (p>0). " $ ! R , p , ! 2 " # pp ' & ! R , p = R , ! p = pL b pL b # R , ! p '

  16. Equivalence of the free fermion Hamiltonian to the Hamiltonian quadratic in density operators { } " " ! 0 = + + ! F ( k ! k F ): c R , k ! c R , k ! : ! ! F ( k + k F ): c L , k ! H c L , k ! : ! k % = pL ! 0 , ! R , ! ( p ) ! # ! ! " $ $ = ! F p " R , ! ( p ) ! R , " , ! p , ! Easy to check: H cf. " # R , " , p 2 # % = pL ! 0 , ! L , ! ( p ) ! # ! ! " $ $ = % ! F p " L , ! ( p ) cf. ! L , " , ! p , ! H " # L , " , p 2 # ! 0 = !" F " : ! r , ! ( p ) " r , ! ( # p ): + const. H L p ! 0, r = ( R , L ), ! GS = ! F " p = 2 !" F GS ! E N E N + 1 “const.” is the ground state energy: L � It changes with the total particle number: ! 0 = !" F " r , ! ( # p ): + !" F 2 + N L ! " " 2 ) : ! r , ! ( p ) H ( N R ! L L p ! 0, r = ( R , L ), ! !

  17. Luttinger liquid Hamiltonian ! 4 = !" F + "# F 2 + N L ! ! = H ! ! ! 0 + H ! 2 + H 2 ) : ! r , ! ( p ) " r , ! ( # p ): H ( N R ! L L ! p " 0, r = ( R , L ), ! + 1 ! % ' g 2 ! ( p ) ! " , ! ' + g 2 $ ( p ) ! " , # ! ' : ! R " ( p ) ! L " ' ( # p ): & ( L p , ! , ! ' + 1 ! ! % ' g 4 ! ( p ) ! " , ! ' + g 4 $ ( p ) ! " , # ! ' : ! r " ( p ) ! r " ' ( # p ): & ( 2 L r = R , L p , ! , ! '

  18. Separation of spin and charge Charge and spin variables ! r ( p ) = 1 & N r ! = 1 # ! r ! ( p ) + ! r " ( p ) % # N r ! + N r " ( p ) % & $ $ 2 2 " r ( p ) = 1 & N r " = 1 # % # % ! r ! ( p ) ' ! r " ( p ) N r ! ' N r " ( p ) & , r = R , L $ $ 2 2 ( ) , g i ! = 1 ( ) , i = 2,4. Interaction constants: g i ! = 1 2 g i ! + g i ! 2 g i ! " g i ! The Hamiltonian ! = H ! ! + H ! ! . H ! ! = H ! 0 + H ! 2 + H ! 4 , ! = " , ! . H same structure with new interaction constants

  19. Diagonalization of LL-Hamiltonian by a Bogoliubov transformation [ ] + ! L ( p )sinh " ( p ) [ ] ! ! R ( p ) = ! R ( p )cosh " ( p ) [ ] + ! R ( p )sinh " ( p ) [ ] ! ! L ( p ) = ! L ( p )cosh " ( p ) !" F + g 4 ( p ) " g 2 ( p ) K ( p ) ! e 2 ! ( p ) = ! ( p ) !" F + g 4 ( p ) + g 2 ( p ). Choice of : dq ! ! For a typical interaction: H int = V ( x " x ')ˆ n ( x ') = n ( " q ) n ( x )ˆ n ( q ) V ( q )ˆ ˆ dxdx ' 2 ! g 4 ! ! V ( q = 0), g 2 ! ! V ( q = 2 k F ). Repulsive interactions: K < 1. K > 1. Attractive interactions:

  20. The diagonalized Hamiltonian ! = ! ! ( # p ): + ! 2 L ! N ( p )( N R + N L ) 2 + ! J ( p )( N R # N L ) 2 " ! ( p ) " ( p ): ! ! $ & H % ' L p ! 0 !" F + g 4 ( p ) " g 2 ( p ) 2 2 ! $ ! $ K ( p ) ! e 2 ! ( p ) = ! F + g 4 ( p ) ' g 2 ( p ) ! ( p ) = !" F + g 4 ( p ) + g 2 ( p ). . # & # & " " " % " % ! N = ! / K = ! F + ( g 4 + g 2 ) / " , ! J = ! K = ! F + ( g 4 ! g 2 ) / " , ! N ! J = ! 2 . g 2 , g 4 ! ! , K ! ! N , ! J

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend