functional renormalization group analysis of luttinger
play

Functional Renormalization-Group Analysis of Luttinger Liquids with - PowerPoint PPT Presentation

Functional Renormalization-Group Analysis of Luttinger Liquids with Impurities S. Andergassen, T. Enss, W. Metzner (MPI Stuttgart) V. Meden, K. Sch onhammer (Universit at G ottingen) Grenoble, 1.6.2006 Outline Introduction:


  1. Functional Renormalization-Group Analysis of Luttinger Liquids with Impurities S. Andergassen, T. Enss, W. Metzner (MPI Stuttgart) V. Meden, K. Sch¨ onhammer (Universit¨ at G¨ ottingen) Grenoble, 1.6.2006

  2. Outline − Introduction: impurities in Luttinger liquids − Method: functional renormalization group (fRG) − Results: local density of states and transport → spinless fermions → spin- 1 2 fermions

  3. Introduction: impurities in Luttinger liquids − Luttinger liquid: → effective low-energy model of correlated electrons in 1D → power laws with interaction-dependent exponents ( K ρ < 1) − impurity effects: → at low energy scales impurity effectively cuts the chain → physical observables determined from open-chain fixed point local DOS: D j ∼ | ω | α B α B = ( K − 1 − 1) / 2 > 0 ρ conductance: G ∼ T 2 α B Kane, Fisher ’92 10 1 conductance through 10 0 G ( µ S) kink in carbon nanotube: power law 10 –1 Segment I Segment II Across the kink 10 –2 50 100 200 300 Yao et al. ’99 T (K)

  4. Aim: development of quantitative theory for microscopic models of interacting Fermi systems: ◮ computation of observables on all energy scales, providing also non-universal properties ◮ determination of scale at which universal asymptotics sets in

  5. Microscopic model V U’ U j 0 1 1 L L t j ,σ ( c † j +1 ,σ c j ,σ + c † H = − t � j ,σ c j +1 ,σ ) j n j ↑ n j ↓ + U ′ � + U � j n j n j +1 + H imp site impurity: H imp = Vn j 0 ( j 0 impurity site) H imp = ( t − t ′ )( c † hopping impurity: j 0 +1 ,σ c j 0 ,σ + h.c. )

  6. ✁ ✄ ✘ ✆ � ✆ � ☎ ✁ Method: functional renormalization group (fRG) ◮ general formulation of Wilson’s RG idea ◮ generating functional of m -particle interaction ◮ introduction of IR-cutoff Λ in G Λ 0 = Θ( | ω | − Λ) G 0 ◮ exact infinite hierachy of coupled flow equations: G Λ = [( G Λ 0 ) − 1 − Σ Λ ] − 1 �✂✁ S Λ = G Λ [ ∂ Λ ( G Λ 0 ) − 1 ] G Λ ✠☛✡ ☞✍✌ ✎✑✏ ✒✔✓ �✂✁☎✄ ✕✗✖ + ✝✟✞ Σ Λ 0 = bare impurity potential ◮ initial conditions: Γ Λ 0 = bare interaction Γ Λ 3 = Γ Λ 0 ◮ truncation of hierarchy: 3 = 0 Wetterich ’93, Morris ’94, Metzner ’99, Salmhofer and Honerkamp ’01

  7. Results: Local DOS at impurity impurity induces long-range 0.4 2 k F oscillations U = 0 0.3 U = 1 ⇓ D j 0 − 1 0.2 strong suppression of DOS at Fermi energy: 0.1 0 D j 0 − 1 ∼ | ω | α B -3 -2 -1 0 1 2 3 ω n = 1 / 2 , V = 1 . 5 , L = 1025 boundary exponent α B spinless fermions independent of impurity potential

  8. Results: Spinless fermions: effective exponents Dependence on impurity potential → convergence to 0.2 universal boundary exponent in general 0.1 very slow 0 α boundary 1 1 L ∼ V 1 − K ρ V = 3 -0.1 V = 1 V = 0 . 3 V = 0 . 1 → non-universal -0.2 behavior relevant! 10 2 10 3 10 4 10 5 10 6 L

  9. � ✁ ✖ � ✁ ✖ ✄ ✄ Results: Spinless fermions: effective exponents Effect of vertex renormalization (VR) ✄✍✌✏✎ ✄✍✌✏✎ ✄✍✌✒✑ ✄✍✌✒✑ ✄✍✌✔✓ ✄✍✌✔✓ ✄✍✌✕✂ ✄✍✌✕✂ ✄✍✌✕✂ ✄✍✌✕✂ without VR with VR ✂☎✄✟☞ ✂☎✄✝☛ ✂☎✄✡✠ ✂☎✄✟✞ ✂☎✄✝✆ ✂☎✄✟☞ ✂☎✄✝☛ ✂☎✄✡✠ ✂☎✄✟✞ ✂☎✄✝✆ boundary n = 1 / 4 impurity: V = 1 . 5 horizontal lines: BA U = 0 . 5 (circles) filled symbols: DMRG U = 1 . 5 (diamonds)

  10. Results: Spin- 1 2 fermions: local DOS at boundary 0.4 parameters: U ′ = 0 0.3 n = 1 / 4 L = 4096 0.4 D 1 0.2 U = 0 0.1 U = 0 . 5 L = 10 6 0.35 U = 1 U = 2 -0.01 0 0.01 0 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 ω − clear increase instead of expected suppression in contrast to low-energy description! − effect of 2-particle backscattering

  11. Discussion: Effect of 2-particle backscattering ˜ V (2 k F ) Hartree-Fock: V (0) − 2 ˜ ˜ � � V (2 k F ) log | ω/ǫ F | + O ( ˜ D j ( ω ) = D 0 V 2 ) j ( ω ) 1 + 2 π v F − bare Hubbard model: ˜ V (0) − 2 ˜ → increase V (2 k F ) = − U < 0 suppression through O ( ˜ V 2 ) − extended Hubbard model: ˜ V (0) − 2 ˜ V (2 k F ) = 2 U ′ [1 − 2 cos(2 k F )] − U 0.3 for ˜ V (2 k F ) = 0 0.2 D 1 U = 0 → similar behavior as 0.1 U = 0 . 5 U = 1 for spinless fermions U = 2 0 -1 -0.5 0 0.5 1 ω

  12. Results: linear conductance G ( T ) = − 2 e 2 | t ( ǫ ) | 2 ∼ | G 1 , N ( ǫ ) | 2 d ε f ′ ( ε ) | t ( ε ) | 2 � with h spin- 1 spinless fermions 2 fermions 10 0 0.05 0.04 0.03 10 − 1 0.02 V = 10 G/ ( e 2 /h ) V = 1 V = 0 . 1 U ′ = 0 0.01 10 − 2 U ′ = 0 . 25 U ′ = 0 . 5 U ′ = 0 . 75 ˜ V (2 k F )=0 U ′ = 1 10 − 3 10 − 4 10 − 3 10 − 2 10 − 1 10 0 10 1 10 − 4 10 − 3 10 − 2 10 − 1 10 0 T T development of clear power laws parameter dependent, in general non-universal behavior relevant! PRB 73 , 045125 (2006), Enss et al. ’04, Meden et al. ’04

  13. Resonant tunneling through a quantum dot Luttinger - liquid behavior in quantum wire width w ∼ N ( K ρ − 1) / 2 Postma et al. ’01 Kondo physics in quantum dot resonance plateau w ∼ U (independent of N ) Goldahber-Gordon et al. ’98 Cronenwett et al. ’98 → interplay of correlation effects

  14. Conductance through a single dot: Kondo physics L R U t’ t’ V g − flow equation for effective level position V Λ = V g + Σ Λ dot : UV Λ /π ∂ Λ V Λ = − U � G Λ dot ( i ω ) = − (Λ + Γ) 2 + ( V Λ ) 2 2 π ω = ± Λ − hybridization Γ = 2 π t ′ 2 ρ leads (wide-band limit) − spectral function is Lorentzian around V = V Λ=0 with width 2Γ and height 1 / ( π Γ) − solution ( v = V π/ U , v g = V g π/ U , γ = Γ π/ U ) for V Λ= ∞ = V g vY 1 ( v ) − γ Y 0 ( v ) = J 0 ( v g ) vJ 1 ( v ) − γ J 0 ( v ) Y 0 ( v g )

  15. Conductance through a single dot: Kondo physics − for | V g | < V c small | V | − for U ≫ Γ sharp crossover to large | V | − expansion for small | v | , | v g | : V = V g exp [ − U / ( π Γ)] − exponential pinning of spectral weight at chemical potential 1 1 U/ Γ =1 2 /h) U/ Γ =10 U/ Γ =25 G/(2e 0.5 0.5 0 0 # electrons 2 1 0 0 -4 -4 -2 -2 0 0 2 2 4 4 V g /U Kondo ’64; Glazman, Raikh ’88; Ng, Lee ’88; PRB 73 , 153308 (2006)

  16. Conductance through a single dot: Kondo physics Comparison with exact results with 2-particle vertex renormalization U/ Γ =4 π 1 1 2 /h) G/(2e 0.5 0.5 U fixed flow of U Bethe ansatz 0 0 -1 -0.5 0 0.5 1 V g /U Gerland et al. ’00, Karrasch et al. ’06

  17. Tunneling with Luttinger - liquid leads L R U=0 t L t R Luttinger liquid V g with characteristic power laws U U’ 1 1 2 /h) 3 N=10 w ∼ N ( K ρ − 1) / 2 4 G/(2e 0.5 0.5 N=10 5 N=10 0 0 -0.8 -0.75 -0.7 K fRG = 0 . 760 V g /t ρ 0.008 K DMRG = 0 . 749 ρ w/t 0.003 Kane, Fisher ’92; Ejima et al. ’05 3 4 5 10 10 10 N

  18. Kondo effect and Luttinger - liquid leads L R U>0 t L t R competing effects: − Luttinger liquid: w → 0 V g U − Kondo effect: w ∼ U U’ 1 1 V g on plateau: 2 /h) 3 N=10 V g = V r g : G ( V r g ) / (2 e 2 / h ) = 1 4 G/(2e 0.5 0.5 N=10 5 N=10 V g � = V r g : 1 − G ( V g ) / (2 e 2 / h ) ∼ N 1 − K ρ 0 0 -1.5 -1 -0.5 0 V g /t conductance → low-energy limit: Luttinger liquid! -3 10 3 4 5 10 10 10 PRB 73 , 153308 (2006) N

  19. Conclusions and outlook ◮ Analysis of spectral and transport properties with fRG technique: − flexible microscopic modeling of geometries, leads and contacts − determination of relevant energy scales and non-universal behavior ◮ Results: → for moderate interaction and impurity parameters large systems required to reach low-energy asymptotics → spin- 1 2 : effects of 2-particle backscattering − deviation from low-energy description − logaritmic corrections → double barrier: Kondo effect relevant on experimentally accessible length scales Outlook − disorder − non-equilibrium phenomena

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend