truncated unity functional renormalization group tufrg
play

Truncated Unity Functional renormalization group (TUfRG) for 2D - PowerPoint PPT Presentation

Truncated Unity Functional renormalization group (TUfRG) for 2D lattices: getting more quantitative 1. fRG: quantitative issues 2. TUfRG in momentum space: recent results 3. TUfRG for frquency dependence: outlook Carsten Honerkamp Institute for


  1. Truncated Unity Functional renormalization group (TUfRG) for 2D lattices: getting more quantitative 1. fRG: quantitative issues 2. TUfRG in momentum space: recent results 3. TUfRG for frquency dependence: outlook Carsten Honerkamp Institute for Theoretical Solid State Physics RWTH Aachen University Support DFG FOR 723, FOR 912, SPP1458/9 & Ho2422/x-x, RTG 1995

  2. Functional RG for Hubbard-type models Model bandwidth Λ Interaction at scale bandwidth ~ eV (few eV s) not much structure, mean-field decoupling ambiguous/impossible functional Intermediate energy scales: particle-hole pairs, renormalization group (fRG): particle-particle loop corrections generate structure lower Λ in effective low-energy interaction V Λ (k 1 , k 2 , k 3 ) k 1 k 3 H e ff = 1 q ) c † q,s c † X p ⇥ , � V ( � p + � p, � 10-100 meV q,s 0 c � p 0 ,s 0 c � p + � � p 0 � � � p,s 2 ≥ T c k 2 k 4 p, � p 0 , � � q s,s 0 ⇒ e.g. guided mean-field decoupling 0 Functional Renormalization Group (fRG): Provides low-energy effective action & momentum structure V Λ ( k,k’,k+q) ! Removes ambiguities of mean-field decouplings.

  3. Functional RG fRG captures all one-loop contributions: Cooper Peierls unbiased description of competing orders Vertices at scale Λ = d/d Λ Vertex- d/d Λ interaction Corrections Λ -derivative of V Λ (k 1 , k 2 , k 3 ) Screening 1-loop diagram k 1 k 3 Brillouin zone k = wavevector, band, frequency k 2 k 4 patch k Fermi surface Keep track of wavevector structure: N -patch wave vector k n Discretize Brillouin zone into N patches n More recently: channel decomposition & form factor expansion Often neglected: self-energy, higher-order interactions, frequency dependence

  4. Flow to strong coupling G 0 Standard cases without self-energy feedback: = Flow to strong coupling G 0 Initial condition V ( k 1 , k 2 , k 3 ) = U Leading low-energy correlations Flow Energy scales è ‘ Weather forecast ’ Λ c = estimate for gaps in electronic spectrum Metzner, Salmhofer et al. RMP 2012

  5. 1. Quantitative issues: testing fRG for materials Take model Hamiltonian with parameters given, e.g., by DFT & cRPA Single-particle parameters, fit or Wannier matrix elements target bands Interaction parameters, e.g., Wannier matrix elements, cRPA n Can fRG become quantitative low-energy frontend of ab-initio theory? n Besides groundstate: Energy scales for phase transitions & relevant excitations? Trends within material families?

  6. Trends in 1111 iron arsenide superconductors metallic antiferromagnet (AF-SDW)

  7. La-1111 versus Sm-1111 Why is T c in La-1111 much lower than in Sm-1111? La-1111 RE- OFeAs ‘ RE -1111’ RE =La,Sm, … As Fe FeAs-Tetrahedra Sm-1111 elongate for Sm-1111 Andersen & Boeri 2011

  8. Trends in 1111 iron arsenides fRG for 8-band model reproduces sizable T c -difference for pairing, while keeping AF-SDW scale unchanged Sm-1111 La-1111 Experimental trend reproduced Superconducting scale differs ~ factor 3 Overall energy scale ok, or a little too small … AF-SDW scale comparable Lichtenstein, Maier, Platt, Thomale, CH, Boeri, Andersen PRB 2014

  9. Gaps in bi- & trilayer graphene (b) Phys. Rev. Lett. 108, See also: 076602 (2012) PRL 2012 B. E. Feldman et al., Nature Phys. 2009, A. S. Mayorov et al., Science 2011 Trilayer gaps: Bao et al., Clean current-annealed Nature Phys. suspendend BLG 2011. Proc. Nat. Acad. Sci., 109, 10802 (2012) Gap scale ≈ 2-3meV Trilayer: Nature Physics, 7, 948 (2011), T c ≈ 5K in bilayer, Lee, C.N. Lau et al. 2014 Even larger in trilayer (40meV) Also: Nijmegen (Maan) group

  10. Model for layered graphene E.g. AB (bernal) stacked bilayer: Four bands, 2 quadratic band crossing points @ K , K ’ Take ab-initio-derived interaction parameters (‘constrained RPA’), interpolate between mono-layer and graphite values Wehling et al. PRL 2011

  11. N-Layer graphene @ charge neutrality Single layer: Raghu, Scherer 0 , CH et al., PRL 2008 Quantum spin Hall AA bilayer , charge density Sanchez de la Pena, spin density wave ungapped Scherer, CH, 2014 wave semimetal ABC trilayer AB bilayer AB bilayer, ABC trilayer Scherer (N-1) , Uebelacker, CH, 2012

  12. The ‘scale challenge’ fRG scales for gaps in layered graphene seems far too large compared to experiment, even with ‘realistic’ model parameters Sources of error: v N-patch fRG (in-)sufficient approximation? fRG Th. Lang et al. PRL 2012, compares QMC gaps with fRG scale, pure onsite Hubbard U v Model incorrect? Other interactions? Long-range Coulomb! v Model parameters incorrect? cfRG instead of cRPA?

  13. Resolve patching ambiguities Choice of representative wavevectors for patches matters: Daniel D. Scherer, Michael M. Scherer, C. Honerkamp, Phys. Rev. B 92 (2015) Yanick Volpez, Daniel D. Scherer, and Michael M. Scherer Convergence requires several patch rings Phys. Rev. B 94 , 165107 (2016) QSH phase replaced by charge-modulated phase

  14. 2. Truncated unity fRG in momentum space n Builds on channel decomposition à la Salmhofer et al. (Husemann, Salmhofer, PRB 2009) n Incorporates numerical advantages of singular-mode (SM-)fRG , Q.H. Wang et al. PRB 21012 n Idea: insert resolutions of unity in momentum space factor basis into one-loop RG eqns δ kk 0 = 1 X e i ( k � k 0 ) x N G 0 x = J. Lichtenstein, D. Sanchez dlP, D. Rohe, CH, S.A. Maier Computer Physics Communications 2017 G 0 n Truncation of basis provides physically transparent approximation & high momentum resolution n Parallelizes nicely on high-performance architectures (= headroom for attacking frequency-dependence, selfenergies, … )

  15. Channel decomposition Husemann, Salmhofer, Giering, Eberlein & Metzner , Maier &CH ... Karrasch et al. Instead of one function of three variables, use three functions P,D, C of one ’strong/bosonic‘ variable s = k 1 + k 2 , t = k 3 − k 1 , u = k 4 − k 1 V Λ ( k 1 , k 2 , k 3 ) = V 0 ( k 1 , k 2 , k 3 ) + P Λ ( k 1 , k 3 ; s ) + D Λ ( k 1 , k 4 ; t ) + C Λ ( k 1 , k 3 ; u ) ‘weak/fermionic’ variables, smooth dependence µ = − 0.7t, 〈 n 〉 ≈ 0.99 µ = − t, 〈 n 〉 ≈ 0.86 µ = − 1.2t, 〈 n 〉 ≈ 0.72 1 1 1 25 25 25 23 23 23 27 27 0.5 0.5 0.5 27 21 21 21 31 29 17 29 29 19 19 17 k y a / π k y a / π k y a / π 19 17 31 31 0 0 0 15 1 3 3 3 1 15 1 15 13 13 13 5 5 − 0.5 5 − 0.5 − 0.5 11 11 11 7 7 7 9 9 9 − 1 − 1 − 1 − 1 0 1 − 1 0 1 − 1 0 1 k x a / π k x a / π k x a / π 12 15 10 µ = − 0.7t, T=0.04t µ = − t, T=0.04t µ = − 1.2t, T=0.01t 10 30 30 30 Data for 8 10 25 25 25 5 V Λ ( k 1 , k 2 , k 3 ) k 1 + k 3 = const . 6 20 20 20 k 3 − k 1 = const . k 1 k 1 k 1 15 15 4 15 from 2D 5 0 10 10 10 2 Hubbard model, 5 5 5 0 CH (2000) 0 10 20 30 10 20 30 10 20 30 − 5 − 2 k 2 k 2 k 2 k 2 − k 3 = k 4 − k 1 = const .

  16. Channel decomposition Husemann, Salmhofer, Giering, Eberlein & Metzner , Maier & CH ... Karrasch et al. Instead of one function of three variables, use three functions P,D, C of one ’strong/bosonic‘ variable s = k 1 + k 2 , t = k 3 − k 1 , u = k 4 − k 1 V Λ ( k 1 , k 2 , k 3 ) = V 0 ( k 1 , k 2 , k 3 ) + P Λ ( k 1 , k 3 ; s ) + D Λ ( k 1 , k 4 ; t ) + C Λ ( k 1 , k 3 ; u ) ‘weak/fermionic variables‘, captured by smooth form factors f x ( k ), form factor expansion: X P Λ ( k 1 , k 3 ; s ) = f x 1 ( k 1 ) f ∗ x 3 ( k 3 ) P Λ ( x 1 , x 3 ; s ) x 1 ,x 3 X ˙ ˙ ˙ C Λ ( x 1 , x 3 ; s ) = P Λ ( x 1 , x 3 ; s ) = D Λ ( x 1 , x 3 ; s ) = P Λ ( k 1 , k 3 ; s ) = T ˙ X V Λ ( k 1 , k ; s ) L PP ( k ; s ) V Λ ( k, k 3 ; s ) N L k

  17. Form factor basis: X P Λ ( k 1 , k 3 ; s ) = f x 1 ( k 1 ) f ∗ x 3 ( k 3 ) P Λ ( x 1 , x 3 ; s ) x 1 ,x 3 bonds on real space lattice x i = ~ b i X Form factors/basis functions f n ( k ) most easily organized on real space Bravais lattice spanned by bond vectors ~ b = b 1 ~ e 1 + b 2 ~ e 2 real lattice bond functions b ( ~ r ) = � ~ f ~ r, ~ b Symmetrize wrt IRREPs of reciprocal lattice point group G k ) = e i ~ k · ~ b ( ~ b bond exponentials f ~ X f l ( ~ r ) = a l ( R ) � ~ r,R ~ b R ∈ G e.g. - + - ‘ d -wave‘ f l ( ~ b ( ~ X k ) = a l ( R ) f R ~ k ) R ∈ G f d x 2 − y 2 ( ~ k ) ∝ cos k x − cos k y For most cases: Short bonds b most important <=> form factors f n ( k ) smooth C. Platt, W. Hanke, R. Thomale, Adv. Phys. 2013

  18. a l ( ~ X f l ( ~ r ) = b ) � ~ Fermion bilinear interaction r, ~ b ~ b e.g. - + - ‘ d -wave‘ In real space, P -interaction becomes pair-pair scattering: 2 3 ! 2 3 ~ b 1 − ~ H V = 1 b 3 X 4X l 3 ( ~ b 3 ) c † r 3 ,s c † 4X a l 1 ( ~ 5 V P a ∗ ~ r 1 − ~ r 3 + b 1 ) c ~ b , s 0 c ~ r 1 + ~ r 1 ,s l 1 ,l 3 5 ~ r 3 + ~ 2 2 ~ b 3 ,s 0 l 1 ,l 3 ~ ~ b 3 b 1 outgoing pair, s,s 0 incoming pair, ~ short ranged short ranged r ~ pair distance, can get long r 3 ~ exchange boson ~ b 3 ~ r Channel decomposition is way of rewriting full interaction as sum ~ b 1 of interactions between all possible/necessary fermion bilinears! ~ r 1 particle-hole-pairs, no spin flip particle-hole-pairs, particle-particle- spin flip pairs V Λ ( k 1 , k 2 , k 3 ) = V 0 ( k 1 , k 2 , k 3 ) + P Λ ( k 1 , k 3 ; s ) + D Λ ( k 1 , k 4 ; t ) + C Λ ( k 1 , k 3 ; u ) Intuitive representation with meaningful truncations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend