proximity in the age of distraction robust approximate

Proximity in the Age of Distraction: Robust Approximate Nearest - PowerPoint PPT Presentation

Proximity in the Age of Distraction: Robust Approximate Nearest Neighbor Search Sariel Har-Peled Sepideh Mahabadi UIUC MIT Nearest Neighbor Problem Nearest Neighbor Dataset of points in a metric space (, ) , e.g.


  1. Proximity in the Age of Distraction: Robust Approximate Nearest Neighbor Search Sariel Har-Peled Sepideh Mahabadi UIUC MIT

  2. Nearest Neighbor Problem

  3. Nearest Neighbor Dataset of π‘œ points 𝑄 in a metric space (π‘Œ, 𝑒 π‘Œ ) , e.g. ℝ 𝑒

  4. Nearest Neighbor Dataset of π‘œ points 𝑄 in a metric space (π‘Œ, 𝑒 π‘Œ ) , e.g. ℝ 𝑒 A query point π‘Ÿ comes online π‘Ÿ

  5. Nearest Neighbor Dataset of π‘œ points 𝑄 in a metric space (π‘Œ, 𝑒 π‘Œ ) , e.g. ℝ 𝑒 A query point π‘Ÿ comes online Goal: π‘Ÿ β€’ Find the nearest data point π‘ž βˆ— π‘ž βˆ—

  6. Nearest Neighbor Dataset of π‘œ points 𝑄 in a metric space (π‘Œ, 𝑒 π‘Œ ) , e.g. ℝ 𝑒 A query point π‘Ÿ comes online Goal: π‘Ÿ β€’ Find the nearest data point π‘ž βˆ— π‘ž βˆ— β€’ Do it in sub-linear time and small space

  7. Approximate Nearest Neighbor Dataset of π‘œ points 𝑄 in a metric space (π‘Œ, 𝑒 π‘Œ ) , e.g. ℝ 𝑒 A query point π‘Ÿ comes online π‘ž Goal: π‘Ÿ β€’ Find the nearest data point π‘ž βˆ— π‘ž βˆ— β€’ Do it in sub-linear time and small space β€’ Approximate Nearest Neighbor ─ If optimal distance is 𝑠 , report a point in distance c𝑠 for c = 1 + πœ—

  8. Approximate Nearest Neighbor Dataset of π‘œ points 𝑄 in a metric space (π‘Œ, 𝑒 π‘Œ ) , e.g. ℝ 𝑒 A query point π‘Ÿ comes online π‘ž Goal: π‘Ÿ β€’ Find the nearest data point π‘ž βˆ— π‘ž βˆ— β€’ Do it in sub-linear time and small space β€’ Approximate Nearest Neighbor ─ If optimal distance is 𝑠 , report a point in distance c𝑠 for c = 1 + πœ— ─ For Hamming (and 𝑀 1 ) query time is π‘œ 1/𝑃(𝑑) [IM98] 1 𝑃(𝑑 2 ) [AI08] ─ and for Euclidean ( 𝑀 2 ) it is π‘œ

  9. Applications of NN Searching for the closest object

  10. Robust NN Problem

  11. Robustness The data points are:

  12. Robustness The data points are: β€’ corrupted, noisy β€’ Image denoising

  13. Robustness The data points are: β€’ corrupted, noisy Movies β€’ Image denoising 1 - 0 - - - Users β€’ Incomplete - 0 1 - 0 - - - - 1 1 - β€’ Recommendation: Sparse matrix

  14. Robustness The data points are: β€’ corrupted, noisy Movies β€’ Image denoising 1 - 0 - - - Users β€’ Incomplete - 0 1 - 0 - - - - 1 1 - β€’ Recommendation: Sparse matrix β€’ Irrelevant β€’ Occluded image

  15. The Robust NN problem β€’ Dataset of π‘œ points 𝑄 in ℝ 𝑒 n=3 π‘ž 1 = (3,4,0,5) π‘ž 2 = (3,2,1,2) π‘ž 3 = (2,3,3,1)

  16. The Robust NN problem β€’ Dataset of π‘œ points 𝑄 in ℝ 𝑒 n=3,k=2 π‘ž 1 = (3,4,0,5) β€’ A parameter 𝒍 π‘ž 2 = (3,2,1,2) π‘ž 3 = (2,3,3,1)

  17. The Robust NN problem β€’ Dataset of π‘œ points 𝑄 in ℝ 𝑒 π‘Ÿ = (1,2, 1,5) n=3,k=2 π‘ž 1 = (3,4,0,5) β€’ A parameter 𝒍 π‘ž 2 = (3,2,1,2) β€’ A query point π‘Ÿ comes online π‘ž 3 = (2,3,3,1) β€’ Find the closest point after removing 𝒍 coordinates

  18. The Robust NN problem β€’ Dataset of π‘œ points 𝑄 in ℝ 𝑒 π‘Ÿ = (1,2, 1,5) n=3,k=2 π‘ž 1 = (3,4,0,5) dist=1 β€’ A parameter 𝒍 π‘ž 2 = (3,2,1,2) dist=0 β€’ A query point π‘Ÿ comes online π‘ž 3 = (2,3,3,1) dist=2 β€’ Find the closest point after removing 𝒍 coordinates

  19. The Robust NN problem β€’ Dataset of π‘œ points 𝑄 in ℝ 𝑒 π‘Ÿ = (1,2, 1,5) n=3,k=2 π‘ž 1 = (3,4,0,5) dist=1 β€’ A parameter 𝒍 π‘ž 2 = (3,2,1,2) dist=0 β€’ A query point π‘Ÿ comes online π‘ž 3 = (2,3,3,1) dist=2 β€’ Find the closest point after removing 𝒍 coordinates

  20. The Robust NN problem β€’ Dataset of π‘œ points 𝑄 in ℝ 𝑒 π‘Ÿ = (1,2, 1,5) n=3,k=2 π‘ž 1 = (3,4,0,5) dist=1 β€’ A parameter 𝒍 π‘ž 2 = (3,2,1,2) dist=0 β€’ A query point π‘Ÿ comes online π‘ž 3 = (2,3,3,1) dist=2 β€’ Find the closest point after removing 𝒍 coordinates οƒ˜ Different set of coordinates for different points οƒ˜ Applying this naively would require 𝑒 𝑙 β‰ˆ 𝑒 𝑙

  21. Budgeted Version β€’ Dataset of π‘œ points 𝑄 in ℝ 𝑒 π‘₯ = 0.5, 0.5, 0.8, 0.3 n=3 β€’ 𝑒 weights π‘ž 1 = (1,4,0,3) π‘₯ = (π‘₯ 1 , π‘₯ 2 , … , π‘₯ 𝑒 ) ∈ 0,1 𝑒 π‘ž 2 = (3,2,4,2) π‘ž 3 = (4,6,3,4)

  22. Budgeted Version β€’ Dataset of π‘œ points 𝑄 in ℝ 𝑒 π‘₯ = 0.5, 0.5, 0.8, 0.3 π‘Ÿ = (1,2, 5,5) n=3 β€’ 𝑒 weights π‘ž 1 = (1,4,0,3) π‘₯ = (π‘₯ 1 , π‘₯ 2 , … , π‘₯ 𝑒 ) ∈ 0,1 𝑒 π‘ž 2 = (3,2,4,2) β€’ A query point π‘Ÿ comes online π‘ž 3 = (4,6,3,4) β€’ Find the closest point after removing a set of coordinates 𝐢 of weight at most 𝟐 .

  23. Budgeted Version β€’ Dataset of π‘œ points 𝑄 in ℝ 𝑒 π‘₯ = 0.5, 0.5, 0.8, 0.3 π‘Ÿ = (1,2, 5,5) n=3 β€’ 𝑒 weights π‘ž 1 = (1,4,0,3) π‘₯ = (π‘₯ 1 , π‘₯ 2 , … , π‘₯ 𝑒 ) ∈ 0,1 𝑒 π‘ž 2 = (3,2,4,2) β€’ A query point π‘Ÿ comes online π‘ž 3 = (4,6,3,4) β€’ Find the closest point after removing a set of coordinates 𝐢 of weight at most 𝟐 .

  24. Budgeted Version β€’ Dataset of π‘œ points 𝑄 in ℝ 𝑒 π‘₯ = 0.5, 0.5, 0.8, 0.3 π‘Ÿ = (1,2, 5,5) n=3 β€’ 𝑒 weights π‘ž 1 = (1,4,0,3) π‘₯ = (π‘₯ 1 , π‘₯ 2 , … , π‘₯ 𝑒 ) ∈ 0,1 𝑒 dist=4 π‘ž 2 = (3,2,4,2) dist=1 β€’ A query point π‘Ÿ comes online π‘ž 3 = (4,6,3,4) dist=3 β€’ Find the closest point after removing a set of coordinates 𝐢 of weight at most 𝟐 .

  25. Budgeted Version β€’ Dataset of π‘œ points 𝑄 in ℝ 𝑒 π‘₯ = 0.5, 0.5, 0.8, 0.3 π‘Ÿ = (1,2, 5,5) n=3 β€’ 𝑒 weights π‘ž 1 = (1,4,0,3) π‘₯ = (π‘₯ 1 , π‘₯ 2 , … , π‘₯ 𝑒 ) ∈ 0,1 𝑒 dist=4 π‘ž 2 = (3,2,4,2) dist=1 β€’ A query point π‘Ÿ comes online π‘ž 3 = (4,6,3,4) dist=3 β€’ Find the closest point after removing a set of coordinates 𝐢 of weight at most 𝟐 .

  26. Results Bicriterion Approximation, for 𝑀 1 norm β€’ Suppose that for π‘ž βˆ— βŠ‚ 𝑄 we have 𝑒𝑗𝑑𝑒 π‘Ÿ, π‘ž βˆ— = 𝑠 after ignoring 𝑙 coordinates

  27. Results Bicriterion Approximation, for 𝑀 1 norm β€’ Suppose that for π‘ž βˆ— βŠ‚ 𝑄 we have 𝑒𝑗𝑑𝑒 π‘Ÿ, π‘ž βˆ— = 𝑠 after ignoring 𝑙 coordinates β€’ For πœ€ ∈ (0,1) o Report a point π‘ž s.t. 𝑒𝑗𝑑𝑒 π‘Ÿ, π‘ž = 𝑃(𝑠/πœ€) after ignoring 𝑃(𝑙/πœ€) coordinates. o Query time equals to π‘œ πœ€ queries in 2-ANN data- structure

  28. Results Bicriterion Approximation, for 𝑀 1 norm β€’ Suppose that for π‘ž βˆ— βŠ‚ 𝑄 we have 𝑒𝑗𝑑𝑒 π‘Ÿ, π‘ž βˆ— = 𝑠 after ignoring 𝑙 coordinates β€’ For πœ€ ∈ (0,1) o Report a point π‘ž s.t. 𝑒𝑗𝑑𝑒 π‘Ÿ, π‘ž = 𝑃(𝑠/πœ€) after ignoring 𝑃(𝑙/πœ€) coordinates. o Query time equals to π‘œ πœ€ queries in 2-ANN data- structure Why not single criterion? β€’ Equivalent to exact near neighbor in Hamming: there is a point within distance 𝑠 of the query iff there is a point within distance 0 after ignoring 𝑙 = 𝑠 coordinates

  29. Results distance #ignored Query Time coordinates #Queries Query type Opt 𝑠 𝑙

  30. Results distance #ignored Query Time coordinates #Queries Query type Opt 𝑠 𝑙 𝑃( 𝑠 π‘œ πœ€ 𝑃( 𝑙 𝑀 1 2-ANN πœ€) πœ€)

  31. Results distance #ignored Query Time coordinates #Queries Query type Opt 𝑠 𝑙 𝑃( 𝑠 π‘œ πœ€ 𝑃( 𝑙 𝑀 1 2-ANN πœ€) πœ€) 𝑑 1/p -ANN 1/p 𝑃(𝑙 𝑑 + 1 π‘œ πœ€ 𝑀 πͺ 𝑃(𝑠 𝑑 + 1 πœ€ ) ) πœ€

  32. Results distance #ignored Query Time coordinates #Queries Query type Opt 𝑠 𝑙 𝑃( 𝑠 π‘œ πœ€ 𝑃( 𝑙 𝑀 1 2-ANN πœ€) πœ€) 𝑑 1/p -ANN 1/p 𝑃(𝑙 𝑑 + 1 π‘œ πœ€ 𝑀 πͺ 𝑃(𝑠 𝑑 + 1 πœ€ ) ) πœ€ 𝑃( 𝑙 (1 + πœ—) - 𝑠(1 + πœ—) O( π‘œ πœ€ 1 + πœ— βˆ’ ANN πœ—πœ€ ) πœ— ) approximation

  33. Results distance #ignored Query Time coordinates #Queries Query type Opt 𝑠 𝑙 𝑃( 𝑠 π‘œ πœ€ 𝑃( 𝑙 𝑀 1 2-ANN πœ€) πœ€) 𝑑 1/p -ANN 1/p 𝑃(𝑙 𝑑 + 1 π‘œ πœ€ 𝑀 πͺ 𝑃(𝑠 𝑑 + 1 πœ€ ) ) πœ€ 𝑃( 𝑙 (1 + πœ—) - 𝑠(1 + πœ—) O( π‘œ πœ€ 1 + πœ— βˆ’ ANN πœ—πœ€ ) πœ— ) approximation π‘œ πœ€ Budgeted 𝑃(𝑠) Weight of 𝑃(1) 2-ANN +𝑃(π‘œ πœ€ 𝑒 4 ) Version

  34. Algorithm

  35. High Level Algorithm Theorem. If for a point π‘ž βˆ— βŠ‚ 𝑄 , the 𝑀 1 distance of π‘Ÿ and π‘ž βˆ— is at most 𝑠 after removing 𝑙 coordinates, there exists an algorithm which reports a point π‘ž whose distance to π‘Ÿ is 𝑃(𝑠/πœ€) after removing 𝑃(𝑙/πœ€) coordinates.

  36. High Level Algorithm Theorem. If for a point π‘ž βˆ— βŠ‚ 𝑄 , the 𝑀 1 distance of π‘Ÿ and π‘ž βˆ— is at most 𝑠 after removing 𝑙 coordinates, there exists an algorithm which reports a point π‘ž whose distance to π‘Ÿ is 𝑃(𝑠/πœ€) after removing 𝑃(𝑙/πœ€) coordinates. β€’ Cannot apply randomized dimensionality reduction e.g. Johnson-Lindenstrauss

  37. High Level Algorithm Theorem. If for a point π‘ž βˆ— βŠ‚ 𝑄 , the 𝑀 1 distance of π‘Ÿ and π‘ž βˆ— is at most 𝑠 after removing 𝑙 coordinates, there exists an algorithm which reports a point π‘ž whose distance to π‘Ÿ is 𝑃(𝑠/πœ€) after removing 𝑃(𝑙/πœ€) coordinates. β€’ Cannot apply randomized dimensionality reduction e.g. Johnson-Lindenstrauss β€’ A set of randomized maps π’ˆ 𝟐 , π’ˆ πŸ‘ , … π’ˆ 𝒏 : ℝ 𝒆 β†’ ℝ 𝒆 β€² β€’ All of them map far points from query to far points β€’ At least one of them maps a close point to a close point

Recommend


More recommend