sensitivity study of at the belle ii experiment
play

Sensitivity study of at the Belle II experiment Outline Michel - PowerPoint PPT Presentation

Sensitivity study of at the Belle II experiment Outline Michel Hernndez Villanueva, B-factories and Cinvestav Group physics. Mexico City Second class currents decay 28 Sep 2017


  1. 
 Sensitivity study of πœβ†’πœƒπœŒπœ‰ at the Belle II experiment Outline Michel HernΓ‘ndez Villanueva, β€’ B-factories and 𝜐 Cinvestav Group 
 physics. Mexico City β€’ Second class currents β€’ πœβ†’πœƒπœŒπœ‰ decay 28 Sep 2017 β€’ Outlook.

  2. B Factories β€’ B-Factory 
 BR ( Ξ₯ (4 S ) β†’ B Β― B ) > 96% 10.58 GeV β€’ 𝝊 factory too! 
 𝝉 (e + e - β€”> 𝜱 (4s)) = 1.05 nb 
 𝝉 (e + e - β€”> 𝝊 𝝊 ) = 0.92 nb Michel H. Villanueva 2 2

  3. Integrated Luminosity of B factories 6.54x10 8 𝝊 ’s 3.98x10 8 𝝊 ’s High-luminosity experiments. Michel H. Villanueva 3 3

  4. SuperKEKB β€’ Super B-Factory 
 (And 𝝊 factory too!) β€’ Integrated luminosity expected: 50 ab -1 
 (4.6x10 10 𝝊 pairs) β€’ Full physics program starts: 
 late 2018 @KEK 
 Tsukuba, Japan Michel H. Villanueva 4

  5. Belle II Detector Michel H. Villanueva 5

  6. Belle II MC samples MC Sample: 
 ~ 2 ab -1 
 (1 ab -1 for training, 
 1 ab -1 for analysis). Michel H. Villanueva 6

  7. 
 Mexican Contribution β€’ 504 cores 
 ~1.4% CPU usage 
 3.7 KHS06 
 of the grid 70 TB storage 7

  8. The πœβ†’πœƒπœŒπœ‰ decay β€’ In this work, we are studying the feasibility to measure the decay 
 πœβ†’πœƒπœŒπœ‰ , 
 in order to get information related at: β€’ Second class currents. β€’ Scalar and tensorial Disadvantage: We cannot detect πœ‰ currents. Michel H. Villanueva 8

  9. The πœβ†’πœƒπœŒπœ‰ decay Mechanisms in the SM: isospin violation 1 β€’ + The corresponding suppression of the SM contribution can make new β€’ physics visible. Charged Higgs Leptoquark 
 exchange exchange 1 R. Escribano, S. Gonzalez, P. Roig; Phys.Rev. D94 (2016) no.3, 034008 Michel H. Villanueva 9

  10. Some recent theoretical predictions BR V (x10 5 ) BR S (x10 5 ) BR V+S (x10 5 ) Ref Model [8] 0.36 1.0 1.36 MDM, 1 resonance [9] [0.2, 0.6] [0.2, 2.3] [0.4, 2.9] MDM, 1 and 2 resonances [10] 0.44 0.04 0.48 Nambu-Jona-Lasinio Analiticity, Unitarity [11] 0.13 0.20 0.33 [12] 0.26 1.41 1.67 3 coupled channels Largest difference comes 
 [8] S. Nussinov + A. Soffer, PRD78, (2008) from scalar form factor. [9] N. Paver + Riazuddin, PRD82, (2010) [10] M. Volkov D. Kostunin, PRD82, (2012) [11] S. Descotes-Genon+B. Moussallam, EJPC74, (2014) [12] R. Escribano, S. Gonzalez, P. Roig; Phys.Rev. D94 (2016) no.3, 034008 β€’ BR( πœβ†’πœƒπœŒπœ‰ ) ~ 10 -5 Accesible at Belle II luminosity. Michel H. Villanueva 10

  11. The πœβ†’πœƒπœŒπœ‰ decay NP contributions (scalar and tensorial currents) can be studied in the β€’ framework of an effective field theory 1 Constraints on scalar and tensor β€’ couplings can be obtained from CLEO experimental upper limits on branching Belle fractions. SM CLEO BaBar BaBar Belle SM 1 E. A. GarcΓ©s, MHV, G. LΓ³pez Castro, P. Roig; arXiv:1708.07802 Michel H. Villanueva 11

  12. Previous Results 470 fb -1 670 fb -1 β€’ This decay mode should have already been discovered if there were no strong background. β€’ Control of the background is essential. Michel H. Villanueva 12

  13. Thrust axis cm Β· Λ† β€’ Thrust axis: such that 
 Λ† P i | ~ n thrust | n thrust p i V thrust = P i | ~ p i cm | V thrust is maximum. Λ† n thrust The thrust axis define a plane which splits the signal side space in two. tag side Michel H. Villanueva 13

  14. 2 ways to reconstruct πœƒ cm Β· Λ† β€’ Thrust axis: such that 
 Λ† P i | ~ n thrust | n thrust p i V thrust = p i cm | P i | ~ V thrust is maximum. 3-prong 1-prong BR( πœƒ β€”> 𝜌𝜌𝜌 0 ) = 22.92% BR( πœƒ β€”> 𝛿𝛿 ) = 39.41% Ξ³ Ξ³ Ο€ Ο€ Ξ³ Ξ³ Ο€ Ο€ 0 Ξ½ Ο„ Signal side Ο€ Ξ· Ξ· Ξ½ Ο„ Ο„ e + e + e βˆ’ Ο„ e βˆ’ Ο„ Ο„ Tag side ` ` Β― Β― Ξ½ ` Ξ½ ` Ξ½ Ο„ Ξ½ Ο„ Michel H. Villanueva 14

  15. πœβ†’πœƒπœŒπœ‰ signal events Selection criteria :tag + 1 or 3 charged + 2 or 3 𝛿 . β€’ Signal events generated: 4M . 
 β€’ (2M for training and 2M for sensitivity study). E ff : 13.56% E ff : 3.70% 3 Γ— 10 Events / ( 0.002 ) 200 180 160 Ο€ 0 β†’ Ξ³Ξ³ 140 120 100 80 60 Ξ· β†’ Ξ³Ξ³ 40 20 0 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 2 Invariant Mass Ξ³ Ξ³ [GeV/c ] Ξ· β†’ Ο€ + Ο€ βˆ’ Ο€ 0 Mis-reconstructed 𝜌 0 𝛿 from other sources 3-prong 1-prong BR( πœƒ β€”> 𝛿𝛿 ) = 39.41% BR( πœƒ β€”> 𝜌𝜌𝜌 0 ) = 22.92% Michel H. Villanueva 15

  16. πœβ†’πœƒπœŒπœ‰ bkg events E ff : 0.34% 1-prong 1 ab -1 MC Background sources: 
 β€’ - 𝝊𝝊 pair 
 - bb pair 
 𝜌 0 veto 
 tau pair - qq pair applied. E ff : 0.002% 1 ab -1 MC E ff : 0.006% bb pair qq pair 1 ab -1 MC Michel H. Villanueva 16

  17. BDT variables (1-prong) TMVA used for this test. 3 10 Γ— 0.12 No. de Background Eficiencia β€’ cos( πœ„ miss ) β€’ ∠ ( πœƒ , 𝜌 ) 1200 0.1 ✏ β€’ PID e ( 𝜌 ) 1000 √ β€’ ∠ (p miss , V thrust ) a/ 2 + B Optimal 
 0.08 cut 800 β€’ PID Β΅ ( 𝜌 ) β€’ M miss 0.06 600 β€’ PID K ( 𝜌 ) β€’ P t ( 𝜌 ) 0.04 400 β€’ E( 𝛿 ) β€’ πœƒ ( πœƒ ) 0.02 Optimization 200 Punzi proposed by 0 Punzi, G. 
 β€’ ∠ ( 𝛿 , 𝛿 ) πœƒ βˆ’ 0.1 βˆ’ 0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 Corte en BDT at arXiv preprint physics/0308063 Correlation Matrix (signal) Correlation Matrix (background) TMVA overtraining check for classifier: BDT Linear correlation coefficients in % Linear correlation coefficients in % 100 100 dx (p ,V ) (p ,V ) -19 33 -18 100 Signal (test sample) Signal (training sample) -1 25 -2 -32 37 4 -6 -1 100 4 4 1 -2 miss thrust miss thrust 80 80 / cos( ΞΈ ) cos( ΞΈ ) 6 -55 -6 -3 8 100 -18 Background (test sample) Background (training sample) -3 -54 -1 14 2 100 1 -4 -2 (1/N) dN miss miss 5 60 60 #PID ( ) #PID ( ) Kolmogorov-Smirnov test: signal (background) probability = 0.81 (0.063) Ο€ -2 -9 -2 2 9 2 -2 100 -1 Ο€ 4 1 3 3 -7 100 -2 e e 40 40 #PID ( ) #PID ( Ο€ ) -3 8 18 6 100 -6 Ο€ -6 6 6 -3 100 -4 -24 -4 -2 2 -2 12 -7 -2 Β΅ Β΅ 4 20 20 #PID ( ) #PID ( Ο€ ) -20 -5 -5 100 Ο€ 3 -10 -6 100 -3 8 -1 7 -12 -4 14 4 -4 -2 1 K K U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)% E( ) + E( ) E( ) + E( ) Ξ³ Ξ³ 0 Ξ³ Ξ³ 5 -8 -5 -50 -9 100 -6 6 -3 33 0 4 -24 1 -54 -8 100 -5 6 2 -1 37 1 2 1 2 3 ∠ ( Ξ· , Ο€ ) -15 -60 41 100 -8 -12 18 9 -32 ∠ ( Ξ· , Ο€ ) -3 -6 15 26 100 -9 -2 12 -4 -19 20 20 βˆ’ βˆ’ M M -7 -37 100 41 -54 -5 8 2 -2 -3 -19 10 100 26 -50 -4 6 3 -6 miss βˆ’ 40 miss βˆ’ 40 Ξ· Ξ· 2 19 100 -20 -3 -54 10 100 10 15 -5 -10 3 -55 1 -2 -1 4 Ξ· Ξ· βˆ’ 60 βˆ’ 60 Pt 100 -37 -60 -9 25 Pt 100 -19 -6 -8 3 -6 12 -24 7 -24 1 -1 1 1 4 Ο€ Ο€ βˆ’ 80 βˆ’ 80 ∠ ( Ξ³ , Ξ³ ) ∠ ( Ξ³ , Ξ³ ) 1 100 19 -15 -3 100 10 -3 -3 5 6 12 -7 4 -1 -4 -2 -1 1 -2 4 Ξ· Ξ· βˆ’ 100 βˆ’ 100 Ξ· E( Ξ· E ∠ Pt M #PID #PID #PID cos( ∠ ∠ P M # # # c ∠ ( ∠ (p ( ∠ ( P P P o ( Ξ³ , ( Ξ³ Ξ³ t ( Ξ³ I s p Ξ· ) + E( , Ξ· ) I D D I D ( Ξ³ Ξ· , Ξ³ Ξ· ) miss Ο€ ΞΈ ) miss , Ο€ + ΞΈ Ο€ ) ( ( ( ,V Ο€ ) E ( ( ( Ο€ Ο€ ) Ο€ Ο€ Ο€ ) Ο€ , V 1 ) Β΅ e ) ) miss 1 ( ) Β΅ e ) ) miss Ξ³ K miss Ξ³ K miss Ξ· ) Ξ· ) thrust ) thrust ) 2 2 0 0.6 0.4 0.2 0 0.2 0.4 βˆ’ βˆ’ βˆ’ Michel H. Villanueva 17 BDT response

  18. Optimal BDT cut Signal E ff cut = 41.87% 1-prong 20000 Events / ( 0.0025 ) 20000 N sig = 271,258 Events / ( 0.004 ) 18000 = 1.039 0.010 Ξ± Β± E ff : 13.56% 16000 18000 = 0.540854 0.000051 Β΅ Β± 14000 = 0.010962 0.000038 Οƒ Β± 16000 12000 n = 2.309 0.039 Β± 14000 10000 8000 12000 6000 10000 4000 2000 8000 0 0.4 0.45 0.5 0.55 0.6 0.65 6000 2 Invariant Mass Ξ³ Ξ³ [GeV/c ] N sig =157,680 
 4000 E ff : 7.88% 2000 0 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 2 Invariant Mass ( ) [GeV/c ] Ξ· Ξ³ Ξ³ Michel H. Villanueva 18

  19. Optimal BDT cut Background E ff cut = 84.51% 1-prong Events / ( 0.0025 ) MC events 0 ( ) ρ β†’ Ο€ Ο€ Ξ½ Events / ( 0.0025 ) MC events MC events 50000 (a ) β†’ Ο€ Ο€ Ο€ Ξ½ 1 0 0 0 ( ) Ο€ Ο€ Ξ³ Ξ½ ( ρ β†’ Ο€ Ο€ ) Ξ½ ρ β†’ Ο€ Ο€ Ξ½ 7000 b b (a ) (a β†’ Ο€ Ο€ Ο€ ) Ξ½ β†’ Ο€ Ο€ Ο€ Ξ½ q q 1 1 40000 0 0 Ο€ Ο€ Ξ³ Ξ½ Ο€ Ο€ Ξ³ Ξ½ N bkg = 2,694,408 b b 6000 b b q q q q 30000 E ff : 0.34% 5000 20000 4000 10000 3000 98,146 events 0 0.4 0.45 0.5 0.55 0.6 0.65 2 Invariant Mass Ξ³ Ξ³ [GeV/c ] 2000 N bkg =417,217 
 1000 E ff : 5.26x10 -4 𝜈 Β± 3 Οƒ 0 0.4 0.45 0.5 0.55 0.6 0.65 2 Invariant Mass [GeV/c ] Ξ³ Ξ³ Michel H. Villanueva 19

  20. πœβ†’πœƒπœŒπœ‰ bkg events E ff : 0.028% 3-prong 1 ab -1 MC Background sources: 
 β€’ - 𝝊𝝊 pair 
 3 𝛒𝛒 0 is the mayor issue. - bb pair 
 (This depends of the hadronic input in the generation of MC) - qq pair tau pair E ff : 5.6x10 -6 bb pair E ff : 7.6x10 -6 1 ab -1 MC qq pair 1 ab -1 MC Michel H. Villanueva 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend